Условия необходимые для поддержания тока. Электрический ток и условия его существования. Электрический ток: условия существования электрического тока

И снова доброго времени суток вам, уважаемые. Без лишних прелюдий начнём наш сегодняшний разговор. Казалось бы, с причинами возникновения тока в проводнике мы давно разобрались. Поместили проводник в поле – побежали электроны, возник ток. Что еще надо. Но оказывается, чтобы этот ток существовал в проводнике постоянно, необходимо соблюдать некоторые условия. Для более ясного понимания физики процесса протекания электрического тока в проводнике рассмотрим пример.

Предположим, что у нас имеется некоторый проводник, который мы поместим в электрическое поле как показано на рисунке 4.1.

Рисунок 4.1 – Проводник в электрическом поле

Условно обозначим величину напряженности на концах проводника как E 1 и E 2 , причем E 1 >E 2 . Как мы выяснили ранее, свободные электроны в проводнике начнут двигаться в сторону большей напряженности поля, то есть в точку А. Однако со временем потенциал, образованный скоплением электронов в точке А станет таким, что создаваемое им собственное электромагнитное поле E 0 сравняется по модулю с внешним полем, причем направления полей будут противоположными, поскольку потенциал точки В – более положительный (недостаток электронов, вызванный воздействием внешнего поля).

Поскольку результирующее действие двух одинаковых противоположных сил равно нулю: |E|+|(E 0)|=0, электроны прекращают упорядоченное движение, электрический ток прекращается. Для того, чтобы поток электронов был непрерывный необходимо: во-первых, приложить дополнительную силу не потенциального характера, которая бы компенсировала влияние собственного электрического поля проводника и, во-вторых, создать замкнутый контур, поскольку перемещение электронов может происходить только в проводниках (ранее мы указали, что диэлектрики хоть и имеют некоторую электропроводность, но не пропускают электрический ток) и для обеспечения постоянства компенсирующей силы необходимо постоянство полей: как внешнего так и собственного.

Начнём разбираться со второго пункта. Будем рассматривать проводник, помещенный в поле, как показано на рисунке 4.2. Предположим, что после того, как взаимодействие внешнего и собственного электромагнитных полей было скомпенсировано, мы приложили дополнительно к внешнему полю еще одно такое же поле. Суммарное действие внешнего поля составит 2 |E|. Ток в проводнике продолжит течь в том же направлении, однако ровно до того момента, пока 2 |E|>|E 0 |, после чего электрический ток вновь прекратиться. То есть внешнее воздействие должно увеличиваться непрерывно для обеспечения протекания тока в разомкнутом проводнике, что невозможно.
Если замкнуть проводник так, чтобы одна его часть лежала вне поля, тогда за счет работы дополнительной силы помимо внешнего поля (эта сила в таком случае должна быть не потенциальной, поскольку работа потенциальной силы в замкнутом контуре равна нулю и не зависит от формы траектории), то в проводнике возникнет электрический ток, обусловленный влиянием только внешнего поля, поскольку собственно поле проводника будет полностью скомпенсировано. Именно поэтому любая электрическая цепь всегда должна быть замкнутой.

Можно попробовать объяснить необходимость введения дополнительной силы из такого соображения: если бы мы могли заряды с конца В проводника частично перебрасывать на конец А проводника, электрический ток бы так же не прекращался. Однако, на такое «десантирование» так же требуется энергия. Значит, введение дополнительной силы всё равно необходимо. Не потенциальные силы так же называют сторонними силами. А их источники – источниками или генераторами тока.

Рисунок 4.2 – Возникновение собственного электромагнитного поля в проводнике

Так где же взять дополнительную силу, которая, притом, не должна быть создана полем, ведь без нее тока мы не получим? Оказывается, во время протекания химической восстановительно-окислительной реакции, например, взаимодействие диодксида свинца и разбавленной серной кислоты, происходит высвобождение свободных электронов:

Для того, чтобы «притянуть» все электроны, высвобожденные в процессе реакции к одной точки пространства, в раствор серной кислоты помещается несколько свинцовых решёток, называемых электродами. Одна часть электродов изготавливается из свинца и называется катод, другая – анод – изготавливается из диоксида свинца. Катод является источником свободных электродов для внешней цепи, а анод – приемником.

Приведённый пример соответствует известному всем автомобилистам (да и не только) устройству – свинцово-кислотному аккумулятору. Конечно, приведенный пример мало совпадает с тем, что происходит внутри аккумулятора в действительности, однако, суть возникновения тока отражает хорошо. Таким образом, между положительным анодом (мало электронов) и отрицательным катодом (много электронов) возникает электрическое поле, которое формирует сторонние силы и создаёт ток в проводнике. Эта сила зависит только от протекания химической реакции, то она практически постоянная до того момента, пока существуют элементы этой реакции – кислота и оксид свинца. Следовательно, если мы уберём электрическое поле и подключим проводник к аноду и катоду, электрический ток всё равно будет протекать из-за того, что аккумулятор создаёт стороннюю силу. Проводник будет иметь вокруг себя собственное электрическое поле, которое нужно преодолеть аккумулятору, чтобы перенести электрон от катода к аноду. В этом и есть суть сторонней силы.

Теперь рассмотрим ситуация с аккумулятором и подключенным к нему проводником.Электрическое поле совершает положительную работу по перемещению положительного заряда (мы говорим именно о положительных зарядах, так как направлению их движения соответствует направление тока) в направлении уменьшения потенциала поля. Источник тока проводит разделение электрических зарядов – на одном полюсе накапливаются положительные заряды, на другом отрицательные. Напряженность электрического поля в источнике направлена от положительного полюса к отрицательному, поэтому работа электрического поля по перемещению положительного заряда будет положительной при его движения от «плюса» к «минусу». Работа сторонних сил, наоборот, положительна в том случае, если положительные заряды перемещаются от отрицательного полюса к положительному, то есть от «минуса» к «плюсу».В этом принципиальное отличие понятий разности потенциалов и ЭДС, о котором всегда необходимо помнить.

На рисунке 4.3 показано направление протекания тока Iв проводнике, подключенному к аккумулятору – от положительного анода к отрицательному катоду, однако внутри аккумулятора сторонние силы химической реакции производят «десантирование» электронов, пришедших из внешней цепи с анода на катод и положительных ионов с катода на анод, то есть действуют против направления движения тока и направления поля.

Рисунок 4.3 – Демонстрация сторонних сил при возникновении электрического тока

Из сделанных выше соображений можно сделать следующий вывод: силы, действующие на заряд внутри источника тока отличны от сил, действующий внутри проводника. Соответственно, необходимо эти силы отличать друг от друга. Для характеристики сторонних сил была введена величина электродвижущей силы (ЭДС) – работы, совершаемой сторонними силами по перемещению единичного положительного заряда.Обозначается латинской буквой ε («эпсилон») и измеряется так же, как и разность потенциалов – в вольтах.

Поскольку разность потенциалов и ЭДС являются силами различного типа, можно говорить о том, что ЭДС вне выводов источника равно нулю. Хотя в обычной жизни этими тонкостями пренебрегают и говорят: «Напряжение на батарее 1.5В», хотя строго говоря напряжение на участке цепи – суммарная работа электростатических и сторонних сил по перемещению единичного положительного заряда. В будущем мы еще будем сталкиваться с этими понятиями и они пригодятся нам при расчете сложных электрических цепей.

На этом, пожалуй всё, потому что урок получился чересчур нагруженным… Но понятия напряжение и ЭДС нужно уметь отличать.

  • Для существования электрического тока необходимо два условия:
    1)замкнутая электрическая цепь;
    2)наличие источника сторонних непотенциальных сил.
  • Электродвижущая сила (ЭДС) – работа, совершаемая сторонними силами по перемещению единичного положительного заряда.
  • Источники сторонних сил в электрической цепи называются так же источниками тока.
  • Положительный вывод аккумулятора называется анод, отрицательный – катод.

Задачек на этот раз не будет, лучше лишний повторить этот урок, чтобы понимать всю физику протекания тока в проводнике. Как всегда любые возникшие вопросы, предложения и пожелания можете оставлять в комментариях ниже! До новых встреч!

Направленное (упорядоченное) движение свободных заряженных частиц под действием электрического поля называется электрическим током .

Условия существования тока :

1. Наличие свободных зарядов.

2. Наличие электрического поля, т.е. разности потенциалов. Свободные заряды имеются в проводниках. Электрическое поле создается источниками тока.

При прохождении тока через проводник он оказывает следующие действия:

· Тепловое (нагревание проводника током). Например: работа электрического чайника, утюга и т.д.).

· Магнитное (возникновение магнитного поля вокруг проводника с током). Например: работа электродвигателя, электроизмерительных приборов).

· Химическое (химические реакции при прохождении тока через некоторые вещества). Например: электролиз.

Можно также говорить о

· Световом (сопровождает тепловое действие). Например: свечение нити накала электрической лампочки.

· Механическом (сопровождает магнитное или тепловое). Например: деформация проводника при нагревании, поворот рамки с током в магнитном поле).

· Биологическом (физиологическом). Например: поражение человека током, использование действия тока в медицине.

Основные величины, описывающие процесс прохождения тока по проводнику .

1. Сила тока I - скалярная величина, равная отношению заряда, прошедшего через поперечное сечение проводника, промежутку времени, в течение которого шел ток. Сила тока показывает, какой заряд проходит через поперечное сечение проводника за единицу времени. Ток называют постоянным , если сила тока не меняется со временем. Для того чтобы ток через проводник был постоянным необходимо, чтобы разность потенциалов на концах проводника была постоянной.

2. Напряжение U . Напряжение численно равно работе электрического поля по перемещению единичного положительного заряда вдоль силовых линий поля внутри проводника.

3. Электрическое сопротивление R - физическая величина, численно равная отношению напряжения (разности потенциалов) на концах проводника к силе тока, проходящего через проводник.

60. Закон Ома для участка цепи.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:

I = U / R;

Ом установил, что сопротивление прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

где ρ - удельное сопротивление, l - длина проводника, S - площадь поперечного сечения проводника.

61. Сопротивление как электрическая характеристика резистора. Зависимость сопротивления металлических проводников от рода материала и геометрических размеров.


Электри́ческое сопротивле́ние - физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Где R - сопротивление; U - разность электрических потенциалов на концах проводника; I - сила тока, протекающего между концами проводника под действием разности потенциалов.

Сопротивление проводника является такой же характеристикой проводника как и его масса. Сопротивление проводника не зависит ни от силы тока в проводнике, ни от напряжения на его концах, а зависит только от рода вещества, из которого изготовлен проводник и его геометрических размеров: , где: l - длина проводника, S - площадь поперечного сечения проводника, ρ - удельное сопротивление проводника, показывающее каким сопротивлением будет обладать проводник длиной 1 м и площадью сечения 1 м 2 , изготовленный из данного материала.

Проводники, подчиняющиеся закону Ома, называются линейными. Существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Зависимость сопротивления проводника от температуры выражается формулой: , где: R - сопротивление проводника при температуре Т, R 0 - сопротивление проводника при температуре 0ºС, α - температурный коэффициент сопротивления.

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока - устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают при движении проводника в магнитном поле, в фотоэлементах - при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

Основные понятия.

Сила тока - скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I - сила тока, q - величина заряда (количество электричества), t - время прохождения заряда.

Плотность тока - векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j -плотность тока , S - площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение - скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A - полная работа сторонних и кулоновских сил, q - электрический заряд.

Электрическое сопротивление - физическая величина, характеризующая электрические свойства участка цепи.

где ρ - удельное сопротивление проводника, l - длина участка проводника, S - площадь поперечного сечения проводника.

Проводимостью называется величина, обратная сопротивлению

где G - проводимость.

Законы Ома.

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U - напряжение на участке, R - сопротивление участка.

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где φ 1 - φ 2 + ε = U напряжение на заданном участке цепи, R - электрическое сопротивление заданного участка цепи.

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R - электрическое сопротивление внешнего участка цепи, r - электрическое сопротивление внутреннего участка цепи.

Короткое замыкание.

Из закона Ома для полной цепи следует, что сила тока в цепи с заданным источником тока зависит только от сопротивления внешней цепи R .

Если к полюсам источника тока подсоединить проводник с сопротивлением R << r , то тогда только ЭДС источника тока и его сопротивление будут определять значение силы тока в цепи. Такое значение силы тока будет являться предельным для данного источника тока и называется током короткого замыкания.

Электродвижущая сила. Любой источник тока характеризуется электродвижущей силой, или, сокращенно, ЭДС. Так, на круглой батарейке для карманного фонарика написано: 1,5 В. Что это значит? Соедините проводником два металлических шарика, несущих заряды противоположных знаков. Под влиянием электрического поля этих зарядов в проводнике возникает электрический ток (рис.15.7 ). Но этот ток будет очень кратковременным. Заряды быстро нейтрализуют друг друга, потенциалы шариков станут одинаковыми, и электрическое поле исчезнет.

Сторонние силы. Для того чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками. Для этого необходимо устройство (источник тока ), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков. В таком устройстве на заряды, кроме электрических сил, должны действовать силы неэлектростатического происхождения (рис.15.8 ). Одно лишь электрическое поле заряженных частиц (кулоновское поле ) не способно поддерживать постоянный ток в цепи.

Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т. е. кулоновских), называют сторонними силами. Вывод о необходимости сторонних сил для поддержания постоянного тока в цепи станет еще очевиднее, если обратиться к закону сохранения энергии. Электростатическое поле потенциально. Работа этого поля при перемещении в нем заряженных частиц вдоль замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии - проводник нагревается. Следовательно, в цепи должен быть какой-то источник энергии, поставляющий ее в цепь. В нем, помимо кулоновских сил, обязательно должны действовать сторонние, непотенциальные силы. Работа этих сил вдоль замкнутого контура должна быть отлична от нуля. Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энергию и отдают ее затем проводникам электрической цепи. Сторонние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальванических элементах, аккумуляторах и т. д. При замыкании цепи создается электрическое поле во всех проводниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле (см. рис.15.8 ). Природа сторонних сил. Природа сторонних сил может быть разнообразной. В генераторах электростанций сторонние силы - это силы, действующие со стороны магнитного поля на электроны в движущемся проводнике. В гальваническом элементе, например элементе Вольта, действуют химические силы. Элемент Вольта состоит из цинкового и медного электродов, помещенных в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте. В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной кислоте.) Между цинковым и медным электродами появляется разность потенциалов, которая и обусловливает ток в замкнутой электрической цепи. Электродвижущая сила. Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращенно ЭДС). Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к величине этого заряда :

Электродвижущую силу, как и напряжение, выражают в вольтах. Можно говорить также об электродвижущей силе и на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке. Электродвижущая сила гальванического элемента есть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока вне самого источника равна нулю. Теперь вы знаете, что такое ЭДС. Если на батарейке написано 1,5 В, то это означает, что сторонние силы (химические в данном случае) совершают работу 1,5 Дж при перемещении заряда в 1 Кл от одного полюса батарейки к другому. Постоянный ток не может существовать в замкнутой цепи, если в ней не действуют сторонние силы, т. е. нет ЭДС.

ПАРАЛЛЕЛЬНОЕ И ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ

Включим в электрическую цепь в качестве нагузки (потребителей тока) две лампы накаливания, каждая из которых обладает каким-то определенным сопротивлением, и каждую из которых можно заменить проводником с таким же сопротивлением.

ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ

Расчет параметров электрической цепи при последовательном соединении сопротивлений:

1. сила тока во всех последовательно соединенных участках цепи одинакова 2. напряжение в цепи, состоящей из нескольких последовательно соединенных участков, равно сумме напряжений на каждом участке 3.сопротивление цепи, состоящей из нескольких последовательно соединенных участков, равно сумме сопротивлений каждого участка

4. работа электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме работ на отдельных участках

А = А1 + А2 5. мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участка

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ

Расчет параметров электрической цепи при параллельном соединении сопротивлений:

1. сила тока в неразветвленном участке цепи равна сумме сил токов во всех параллельно соединенных участках

3. при параллельном соединении сопротивлений складываются величины, обратные сопротивлению:

(R - сопротивление проводника, 1/R - электрическая проводимость проводника)

Если в цепь включены параллельно только два сопротивления, то:

(при параллельном соединении общее сопротивление цепи меньше меньшего из включенных сопротивлений )

4. работа электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме работ на отдельных участках: A=A1+A2 5. мощность электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме мощностей на отдельных участках: P=P1+P2

Для двух сопротивлений: т.е. чем больше сопротивление, тем меньше в нём сила тока.

Закон Джоуля-Ленца - физический закон, который позволяет определить тепловое дествие тока в цепи, по этому закону: , где I - сила тока в цепи, R - сопротивление, t - время. Данная формула была вычесленена путём создания цепи: гальванический эллемент (батарейка), резистор и амперметр. Резистор окунали в жидкость, в которую вставляли термометр и мерили темпиратуру. Вот так они и вывели свой закон и навсегда себя впечатали в историю, но даже без их опытов можно было вывести этот же закон:

U=A/q A=U*q=U*I*t=I^2*R*t но даже не смотря на это честь и хвала этим людям.

Закон Джоуля Ленца определяет выделенное количество тепла на участке электрической цепи обладающей конечным сопротивлением при прохождении тока через нее. Обязательным условием является тот факт, что на этом участке цепи должны отсутствовать химические превращения.

РАБОТА ЭЛЕКТРИЧЕСКОГО ТОКА

Работа электрического тока показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику.

Зная две формулы: I = q/t ..... и..... U = A/q можно вывести формулу для расчета работы электрического тока: Работа электрического тока равна произведению силы тока на напряжение и на время протекания тока в цепи.

Единица измерения работы электрического тока в системе СИ: [ A ] = 1 Дж = 1A. B . c

НАУЧИСЬ, ПРИГОДИТСЯ! При расчетах работы электрического тока часто применяется внесистемная кратная единица работы электрического тока: 1 кВт.ч (киловатт-час).

1 кВт.ч = ...........Вт.с = 3 600 000 Дж

В каждой квартире для учета израсходованной электроэнергии устанавливаются специальные приборы-счетчики электроэнергии, которые показывают работу электрического тока, совершенную за какой-то отрезок времени при включении различных бытовых электроприборов. Эти счетчики показывают работу электрического тока (расход электроэнергии) в "кВт.ч".

Необходимо научиться рассчитывать стоимость израсходованной электроэнергии! Внимательно разбираемся в решении задачи на странице 122 учебника (параграф 52) !

МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА

Мощность электрического тока показывает работу тока, совершенную в единицу времени и равна отношению совершенной работы ко времени, в течение которого эта работа была совершена.

(мощность в механике принято обозначать буквой N , в электротехнике - буквой Р ) так как А = IUt , то мощность электрического тока равна:

или

Единица мощности электрического тока в системе СИ:

[ P ] = 1 Вт (ватт) = 1 А. B

Законы Кирхгофа правила, которые показывают, как соотносятся токи и напряжения в электрических цепях. Эти правила были сформулированы Густавом Кирхгофом в 1845 году. В литературе часто называют законами Кирхгофа, но это не верно, так как они не являются законами природы, а были выведены из третьего уравнения Максвелла при неизменном магнитном поле. Но все же, первое более привычное для них название, поэтому и мы будет их называть, как это принято в литературе – законы Кирхгофа.

Первый закон Кирхгофа – сумма токов сходящихся в узле равна нулю.

Давайте разбираться. Узел это точка, соединяющая ветви. Ветвью называется участок цепи между узлами. На рисунке видно, что ток i входит в узел, а из узла выходят токи i 1 и i 2 . Составляем выражение по первому закона Кирхгофа, учитывая, что токи, входящие в узел имеют знак плюс, а токи, исходящие из узла имеют знак минус i-i 1 -i 2 =0. Ток i как бы растекается на два тока поменьше и равен сумме токов i 1 и i 2 i=i 1 +i 2 . Но если бы, например, ток i 2 входил в узел, тогда бы ток I определялся как i=i 1 -i 2 . Важно учитывать знаки при составлении уравнения.

Первый закон Кирхгофа это следствие закона сохранения электричества: заряд, приходящий к узлу за некоторый промежуток времени, равен заряду, уходящему за этот же интервал времени от узла, т.е. электрический заряд в узле не накапливается и не исчезает.

Второй закон Кирхгофа алгебраическая сумма ЭДС, действующая в замкнутом контуре, равна алгебраической сумме падений напряжения в этом контуре.

Напряжение выражено как произведение тока на сопротивление (по закону Ома).

В этом законе тоже существуют свои правила по применению. Для начала нужно задать стрелкой направление обхода контура. Затем просуммировать ЭДСи напряжения соответственно, беря со знаком плюс, если величина совпадает с направлением обхода и минус, если не совпадает. Составим уравнение по второму закону Кирхгофа, для нашей схемы. Смотрим на нашу стрелку, E 2 и Е 3 совпадают с ней по направлению, значит знак плюс, а Е 1 направлено в противоположную сторону, значит знак минус. Теперь смотрим на напряжения, ток I 1 совпадает по направлению со стрелкой, а токи I 2 и I 3 направлены противоположно. Следовательно:

-E 1 +E 2 +E 3 =I 1 R 1 -I 2 R 2 -I 3 R 3

На основании законов Кирхгофа составлены методы анализа цепейпеременного синусоидального тока. Метод контурных токов – метод основанный на применении второго закона Кирхгофа и метод узловых потенциаловоснованный на применении первого закона Кирхгофа.

В разных средах носителями электрического тока являются разные заряженные частицы.

Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).

Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.

Основные характеристики:

1. Сила тока - I, единица измерения - 1 А (Ампер).

Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.

Формула (1) справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.

Для переменного тока:

I = lim Dq/Dt , (*)
Dt - 0

т.е. I = q", где q" - производная от заряда по времени.

2. Плотность тока - j, единица измерения - 1 А/м 2 .

Плотностью тока называется величина, равная силе тока, протека-ющего через единичное поперечное сечение проводника:

3. Электродвижущая сила источника тока - э.д.с. (e), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:

e = А ст. /q .(3)

4. Сопротивление проводника - R, единица измерения - 1 Ом.

Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что

l - длина проводника,
S - площадь поперечного сечения,
r - коэффициент пропорциональности, названный удельным сопротивлением материала.

Эта формула хорошо подтверждается на опыте.

Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что

r = r 0 (1 + a t) , (5)

R = R 0 (1 + a t) . (6).

Коэффициент a называется температурным коэффициентом сопротив-ления:

a = (R - R 0)/R 0 *t .

Для химически чистых металлов a > 0 и равно 1/273 К -1 . Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t) для металлов линейная:

В 1911 году открыто явление сверхпроводимости , заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью s

5. Напряжение - U , единица измерения - 1 В.

Напряжение - физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.

U = (A ст. + А эл.)/q .(8)

Так как А ст. /q = e, а А эл. /q = f 1 -f 2 , то

U = e + (f 1 - f 2) .(9)

2. ЗАКОНЫ ПОСТОЯННОГО ТОКА:

Электрический ток. Сила тока. Закон Ома для участка цепи. Сопротивление проводников. Последовательное и параллельное соединение проводников. Электродвижущая сила. Закон Ома для полной цепи. Работа и мощность тока.

Всякое движение электрических зарядов называют электрическим током . В металлах могут свободно перемещаться электроны, в проводящих растворах - ионы, в газах могут существовать в подвижном состоянии и электроны, и ионы.

Условно за направление тока считают направление движения положительных частиц, поэтому в металлах это направление противоположно направлению движения электронов.

Плотность тока - величина заряда, проходящего в единицу времени через единицу поверхности, перпендикулярной к линиям тока. Эта величина обозначается j и рассчитывается следующим образом:

Здесь n - концентация заряженных частиц, e - заряд каждой из частиц, v - их скорость.

Сила тока i - величина заряда, проходящего в единицу времени через полное сечение проводника. Если за время dt через полное сечение проводника прошел заряд dq, то

По другому, сила тока находится интегрированием плотности тока по всей поверхности любого сечения проводника. Единица измерения силы тока - Ампер. Если состояние проводника (его температура и др.) стабильно, то между приложенным к его концам напряжением и возникающим при этом током существует однозначная связь. Она называется Закон Ома и записывается так:

R - электрическое сопротивление проводника, зависящее от рода вещества и от его геометрических размеров. Единичным сопротивлением обладает проводник, в котором возникает ток 1 А при напряжении 1 В. Эта единица сопротивления называется Ом.

Закон Ома в дифференциальной форме:

где j - плотность тока, Е - напряженность поля, s - проводимость. В этой записи закон Ома содержит величины, характеризующие состояние поля в одной и той же точке.

Различают последовательное и параллельное соединения проводников.
При последовательном соединении ток, протекающий по всем участкам цепи, одинаков, а напряжение на концах цепи складывается как алгебраическая сумма напряжений на всех участках.

При параллельном соединении проводников постоянным остается напряжение, а ток складывается из суммы токов, протекающих по всем ветвям. В этом случае складываются величины, обратные сопротивлению:

Для получения постоянного тока на заряды в электрической цепи должны действовать силы, отличные от сил электростатического поля; их называют сторонними силами .

Если рассматривать полную электрическую цепь , необходимо включить в нее действие этих сторонних сил и внутренне сопротивление источника тока r. В этом случае закон Ома для полной цепи примет вид:

Е - электродвижущая сила (ЭДС) источника. Она измеряется в тех же единицах, что и напряжение. Величину (R+r) называют иногда полным сопротивлением цепи .

Сформулируем правила Киркгофа :
Первое правило: алгебраическая сумма сил токов в участках цепи, сходящихся в одной точке разветвления, равна нулю.

Второе правило: для любого замкнутого контура сумма всех падений напряжения равна сумме всех ЭДС в этом контуре.

Мощность тока рассчитывается по формуле

P=UI=I 2 R=U 2 /R.

Закон Джоуля-Ленца. Работа электрического тока (тепловое действие тока) A=Q=UIt=I 2 Rt=U 2 t/R.

Электронная проводимость металлов. Сверхпроводимость. Электрический ток в растворах и расплавах электролитов. Закон электролиза. Электрический ток в газах. Самостоятельный и несамостоятельный разряды. Понятие о плазме. Ток в вакууме. Электронная эмиссия. Диод. Электронно-лучевая трубка.

Электрический ток в металлах есть движение электронов , ионы металла участия в переносе электрического заряда не принимают. Другими словами, в металлах есть электроны, способные перемещаться по металлу. Они получили название электронов проводимости . Положительные заряды в металле представляют собой ионы, образующие кристаллическую решетку. В отсутствии внешнего поля электроны в металле движутся хаотично, претерпевая соударения с ионами решетки. Под воздействием внешнего электрического поля электроны начинают упорядоченное движение, накладывающееся на их прежние хаотические флуктуации. В процессе упорядоченного движения электроны по-прежнему сталкиваются с ионами кристаллической решетки. Именно этим и обусловлено электрическое сопротивление.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам классической механики. Взаимодействием электронов между собой пренебрегают, взаимодействие электронов с ионами сводят только к соударениям. Можно сказать, что электроны проводимости рассматривают как электронный газ, подобный идеальному атомарному газу в молекулярной физике. Поскольку средняя кинетическая энергия на одну степень свободы для такого газа равна kT/2, а свободный электрон обладает тремя степенями свободы, то

mv 2 t /2=3kT/2,

где v 2 t - среднее значение квадрата скорости теплового движения.
На каждый электрон действует сила, равная еЕ, в результате чего он приобретает ускорение еЕ/m. Скорость к концу свободного пробега равна

где t - среднее время между соударениями.

Поскольку электрон движется равноускоренно, его средняя скорость равна половине максимальной:

Среднее время между соударениями есть отношение длины свободного пробега к средней скорости:

Поскольку обычно скорость упорядоченного движения много меньше тепловой скорости, то скоростью упорядоченного движения пренебрегли.

Окончательно, имеем

v c =eEL/(2mv t).

Коэффициент пропорциональности между v c и Е называется подвижность электронов .

С помощью классической электронной теории газов могут быть объяснены многие закономерности - закон Ома, закон Джоуля-Ленца и другие явления, однако эта теория не может объяснить, например, явления сверхпроводимости :
При определенной температуре удельное сопротивление для некоторых веществ скачком уменьшается практически до нуля. Это сопротивление настолько мало, что однажды возбужденный в сверхпроводнике электрический ток существует длительное время без источника тока. Несмотря на скачкообразное изменение сопротивления, другие характеристики сверхпроводника (теплопроводность, теплоемкость и др.) не меняются либо меняются мало.

Более точным методом, объясняющим такие явления в металлах, является подход с использованием квантовой статистики .


Похожая информация.


Разделы: Физика

Цели урока.

Обучающая:

формирование знаний учащихся об условиях возникновения и существования электрического тока.

Развивающая:

развитие логического мышления, внимания, умений использовать полученные знания на практике.

Воспитательная:

создание условий для проявления самостоятельности, внимательности и самооценки.

Оборудование.

  1. Гальванические элементы, аккумулятор, генератор, компас.
  2. Карточки (прилагаются).
  3. Демонстрационный материал (портреты выдающихся физиков Ампера, Вольта; плакаты “Электричество”, “Электрические заряды”).

Демонстрации:

  1. Действие электрического тока в проводнике на магнитную стрелку.
  2. Источники тока: гальванические элементы, аккумулятор, генератор.

План проведения урока

1. Организационный момент.

2. Вступительное слово преподавателя.

3. Подготовка к восприятию нового материала.

4. Изучение нового материала.

а) источники тока;

б) действия электрического тока;

в) физическая оперетта “Королева Электричество”;

г) заполнение таблицы “Электрический ток”;

д) меры безопасности при работе с электроприборами.

5. Подведение итогов урока.

6. Рефлексия.

7. Домашнее задание:

а) Опираясь на знания, полученные на уроках ОБЖ, спецтехнологии подготовить и записать в тетради памятку “Меры безопасности при работе с электроприборами”

б) Индивидуальное задание: Подготовить сообщение о применении источника тока в быту и технике.

Конспект урока

1. Организационный момент

Отметить наличие учащихся, назвать тему урока, цель.

2. Вступительное слово преподавателя

Со словами электричество, электрический ток мы знакомы с раннего детства. Электрический ток используется в наших домах, на транспорте, на производстве, в осветительной сети.

Но, что такое электрический ток, какова его природа, понять нелегко.

Слово электричество произошло от слова электрон, которое переводится с греческого языка как янтарь. Янтарь - это окаменевшая смола древних хвойных деревьев. Слово ток обозначает течение или движение чего-либо.

3. Подготовка к восприятию нового материала

Вопросы вводной беседы.

Какие два типа зарядов существуют в природе? Как они взаимодействуют?

Ответ: В природе существуют два вида зарядов: положительные и отрицательные.

Носителями положительного заряда являются протоны, отрицательного электроны. Одноименно заряженные частицы отталкиваются, разноименно заряженные притягиваются

Существует ли электрическое поле вокруг электрона?

Ответ: Да, электрическое поле вокруг электрона существует.

Что такое свободные электроны?

Ответ: Это электроны наиболее удаленные от ядра, они могут свободно двигаться между атомами.

4. Изучение нового материала

а) Источники тока.

На столе находятся специальные устройства. Как они называются? Для чего они нужны?

Ответ: Это гальванические элементы, аккумулятор, генератор - общее название источники тока. Они необходимы для подачи электрической энергии, создают электрическое поле в проводнике.

Мы знаем, что существуют заряженные частицы, электроны и протоны, знаем, что существуют устройства, которые называются источниками тока.

б) Действия электрического тока.

Скажите, как мы можем понять, что в цепи существует электрический ток, по каким действиям?

Ответ: Электрический ток оказывает различные виды действия:

  • Тепловое – проводник по которому идет электрический ток нагревается (электроплита, утюг, лампа накаливания, паяльник).
  • Химическое действие тока можно наблюдать при пропускании электрического тока через раствор медного купороса – выделение меди из раствора купороса, хромирование, никелирование.
  • Физиологическое – сокращение мышц человека и животных, по которым прошел электрический ток.
  • Магнитное – при прохождении электрического тока по проводнику, если рядом расположить магнитную стрелку она способна отклонится. Это действие является основным. Демонстрация опыта: аккумулятор, лампа накаливания, соединительные провода, компас.

в) Физическая оперетта “Королева Электричество”. (Приложение № 1)

Теперь девушки старшего курса представят вашему вниманию оперетту “Королева Электричество”. Не забываем русскую народную пословицу “Сказка ложь, да в ней намек, добрым молодцам урок”. То есть, вы не только слушаете и смотрите, но и берете из нее определенную информацию. Ваша задача записать как можно больше физических терминов, которые встречаются в представлении.

г) Заполнение таблицы “Электрический ток”. (Приложение № 2)

Скажите, какое одно понятие объединяет все термины, которые вы записали?

Ответ: Электрический ток.

Приступаем к заполнению таблицы “Электрический ток”.

Заполняя таблицу, давайте, обобщим полученные на уроке знания и получим новую информацию.

В процессе заполнения таблицы делаем вывод о том, какие условия необходимы для создания электрического тока.

  • Первое условие - это наличие свободных заряженных частиц.
  • Второе условие - это наличие электрического поля внутри проводника.

д) Меры безопасности при работе с электроприборами.

Где, на производственной практике, вы сталкиваетесь с применением электрического тока? Ответы учащихся.

Ответ: При работе с электроприборами.

Запрещено.

  • Ходить по земле, держа в руках включенные в сеть электроприборы. Особенно опасно ходить босиком по влажной почве.
  • Входить в электрощитовые и другие электротехнические помещения.
  • Браться за оборванные, оголенные, висящие и лежащие на земле провода.
  • Вбивать гвозди в стену в месте, где может располагаться скрытая проводка. Смертельно опасно в этот момент заземляться на батареи центрального отопления, водопровод.
  • Сверлить стены в местах возможной электропроводки.
  • Красить, белить, мыть стены с наружной или скрытой проводкой, находящейся под напряжением.
  • Работать с включенными электроприборами вблизи батарей или водопровода.
  • Работать с электроприборами, менять лампочки, стоя на ванной.
  • Работать с неисправными электроприборами.
  • Ремонтировать необесточенные электроприборы.

5. Подведение итогов урока

Следуя законам физики, время неумолимо движется вперед, и наш урок подошел к своему логическому завершению.

Давайте подведем итоги нашего занятия.

Как вы считаете, что такое электрический ток?

Ответ: Электрический ток – это направленное движение заряженных частиц.

Какие условия необходимы для создания электрического тока?

Ответ: Первое условие - это наличие свободных заряженных частиц.

Второе условие - это наличие электрического поля внутри проводника.

6. Рефлексия

7. Домашнее задание

а) Опираясь на знания, полученные на уроках ОБЖ, спецтехнологии, подготовить и записать в тетради памятку “Меры безопасности при работе с электроприборами”.

б) Индивидуальное задание: Подготовить сообщение о применении источника тока в быту и технике. (