МНК для функції двох змінних. Апроксимація дослідних даних. Метод найменших квадратів. Практична реалізація МНК для лінійної залежності на непрограмованому калькуляторі

приклад.

Експериментальні дані про значення змінних хі унаведено у таблиці.

В результаті їх вирівнювання отримано функцію

Використовуючи метод найменших квадратів, апроксимувати ці дані лінійною залежністю y=ax+b(Знайти параметри аі b). З'ясувати, яка з двох ліній краще (у сенсі способу менших квадратів) вирівнює експериментальні дані. Зробити креслення.

Суть методу найменших квадратів (МНК).

Завдання полягає у знаходженні коефіцієнтів лінійної залежності, при яких функція двох змінних аі b набуває найменшого значення. Тобто, за даними аі bсума квадратів відхилень експериментальних даних від знайденої прямої буде найменшою. У цьому суть методу найменших квадратів.

Таким чином, рішення прикладу зводиться до знаходження екстремуму функції двох змінних.

Висновок формул знаходження коефіцієнтів.

Складається та вирішується система із двох рівнянь із двома невідомими. Знаходимо приватні похідні функції змінних аі b, Прирівнюємо ці похідні до нуля.

Вирішуємо отриману систему рівнянь будь-яким методом (наприклад методом підстановкиабо ) і отримуємо формули для знаходження коефіцієнтів методом найменших квадратів (МНК).

За даними аі bфункція набуває найменшого значення. Доказ цього факту наведено.

Ось і весь спосіб найменших квадратів. Формула для знаходження параметра aмістить суми , , , та параметр n- Кількість експериментальних даних. Значення цих сум рекомендуємо обчислювати окремо. Коефіцієнт bзнаходиться після обчислення a.

Настав час згадати про вихідний приклад.

Рішення.

У нашому прикладі n=5. Заповнюємо таблицю для зручності обчислення сум, що входять до формул шуканих коефіцієнтів.

Значення у четвертому рядку таблиці отримані множенням значень 2-го рядка на значення 3-го рядка для кожного номера i.

Значення у п'ятому рядку таблиці отримані зведенням у квадрат значень другого рядка для кожного номера i.

Значення останнього стовпця таблиці – це суми значень рядків.

Використовуємо формули методу найменших квадратів для знаходження коефіцієнтів аі b. Підставляємо у них відповідні значення з останнього стовпця таблиці:

Отже, y = 0.165x+2.184- пряма апроксимуюча.

Залишилося з'ясувати, яка з ліній y = 0.165x+2.184або краще апроксимує вихідні дані, тобто провести оцінку шляхом найменших квадратів.

Оцінка похибки способу менших квадратів.

Для цього потрібно обчислити суми квадратів відхилень вихідних даних від цих ліній і менше значення відповідає лінії, яка краще в сенсі методу найменших квадратів апроксимує вихідні дані.

Оскільки , то пряма y = 0.165x+2.184краще наближає вихідні дані.

Графічна ілюстрація методу найменших квадратів (МНК).

На графіках все чудово видно. Червона лінія – це знайдена пряма y = 0.165x+2.184, синя лінія – це , Рожеві точки - це вихідні дані.

Навіщо це потрібно, до чого всі ці апроксимації?

Я особисто використовую для вирішення завдань згладжування даних, задач інтерполяції та екстраполяції (у вихідному прикладі могли б попросити знайти значення спостережуваної величини yпри x=3або при x=6методом МНК). Але докладніше поговоримо про це пізніше в іншому розділі сайту.

Доведення.

Щоб при знайдених аі bфункція приймала найменше значення, необхідно, щоб у цій точці матриця квадратичної форми диференціала другого порядку для функції була позитивно визначеною. Покажемо це.

Він має безліч застосувань, оскільки дозволяє здійснювати наближене уявлення заданої функції іншими більш простими. МНК може виявитися надзвичайно корисним при обробці спостережень і його активно використовують для оцінки одних величин за результатами вимірювань інших, що містять випадкові помилки. З цієї статті ви дізнаєтеся, як реалізувати обчислення методом найменших квадратів в Excel.

Постановка задачі на конкретному прикладі

Припустимо, є два показники X і Y. Причому Y залежить від X. Так як МНК цікавить нас з погляду регресійного аналізу (в Excel його методи реалізуються за допомогою вбудованих функцій), то відразу ж перейти до розгляду конкретної задачі.

Отже, нехай X — торгова площа продовольчого магазину, яка вимірюється у квадратних метрах, а Y — річний товарообіг, який визначається мільйонами рублів.

Потрібно зробити прогноз, який товарообіг (Y) матиме магазин, якщо в нього та чи інша торгова площа. Очевидно, що функція Y = f(X) зростаюча, оскільки гіпермаркет продає більше товарів, ніж ларьок.

Декілька слів про коректність вихідних даних, що використовуються для передбачення

Припустимо, ми маємо таблицю, побудовану за даними для n магазинів.

Згідно з математичною статистикою, результати будуть більш-менш коректними, якщо досліджуються дані щодо хоча б 5-6 об'єктів. Крім того, не можна використовувати "аномальні" результати. Зокрема, невеликий елітний бутік може мати товарообіг у рази більший, ніж товарообіг великих торгових точок класу «масмаркет».

Суть методу

Дані таблиці можна зобразити на декартовій площині у вигляді точок M 1 (x 1 y 1), … M n (x n y n). Тепер розв'язання задачі зведеться до підбору апроксимуючої функції y = f(x), що має графік, що проходить якомога ближче до точок M1, M2,.. Mn.

Звичайно, можна використовувати багаточлен високого ступеня, але такий варіант не тільки важко реалізувати, але й просто некоректний, тому що не відображатиме основну тенденцію, яку і потрібно виявити. Найрозумнішим рішенням є пошук прямої у = ax + b, яка найкраще наближає експериментальні дані, a точніше, коефіцієнтів – a та b.

Оцінка точності

При будь-якій апроксимації особливої ​​важливості набуває оцінка її точності. Позначимо через e i різницю (відхилення) між функціональними та експериментальними значеннями для точки x i , тобто e i = y i - f (x i).

Очевидно, що для оцінки точності апроксимації можна використовувати суму відхилень, тобто при виборі прямої для наближеного уявлення залежності X від Y потрібно віддавати перевагу тій, у якої найменше значення суми e i у всіх точках. Однак, не все так просто, тому що поряд із позитивними відхиленнями практично будуть присутні і негативні.

Вирішити питання можна, використовуючи модулі відхилень або їх квадрати. Останній метод набув найбільш широкого поширення. Він використовується в багатьох областях, включаючи регресійний аналіз (в Excel його реалізація здійснюється за допомогою двох вбудованих функцій) і давно довів свою ефективність.

Метод найменших квадратів

В Excel, як відомо, існує вбудована функція автосуми, що дозволяє обчислити значення всіх значень, які розташовані у виділеному діапазоні. Таким чином, ніщо не завадить нам розрахувати значення виразу (e 1 2 + e 2 2 + e 3 2 + ... e n 2).

У математичному записі це має вигляд:

Оскільки спочатку було прийнято рішення про апроксимування за допомогою прямої, то маємо:

Таким чином, завдання знаходження прямої, яка найкраще описує конкретну залежність величин X та Y, зводиться до обчислення мінімуму функції двох змінних:

Для цього потрібно прирівняти до нуля приватні похідні за новими змінними a і b, і вирішити примітивну систему, що складається з двох рівнянь з двома невідомими видами:

Після нехитрих перетворень, включаючи поділ на 2 та маніпуляції із сумами, отримаємо:

Вирішуючи її, наприклад, методом Крамера, отримуємо стаціонарну точку з деякими коефіцієнтами a* та b*. Це і є мінімум, тобто для передбачення, який товарообіг буде у магазину при певній площі, підійде пряма y = a * x + b * , Що являє собою регресійну модель для прикладу, про який йдеться. Звичайно, вона не дозволить знайти точний результат, але допоможе одержати уявлення про те, чи окупиться покупка в кредит магазину конкретної площі.

Як реалізувати метод найменших квадратів в Excel

У "Ексель" є функція для розрахунку значення МНК. Вона має такий вигляд: «ТЕНДЕНЦІЯ» (відоме значення Y; відоме значення X; нові значення X; конст.). Застосуємо формулу розрахунку МНК Excel до нашої таблиці.

Для цього в комірку, в якій має бути відображено результат розрахунку за методом найменших квадратів в Excel, введемо знак = і виберемо функцію ТЕНДЕНЦІЯ. У вікні заповнимо відповідні поля, виділяючи:

  • діапазон відомих значень для Y (у разі дані для товарообігу);
  • діапазон x 1, … x n, тобто величини торгових площ;
  • і відомі, і невідомі значення x, для якого потрібно з'ясувати розмір товарообігу (інформацію про їхнє розташування на робочому аркуші див. далі).

Крім того, у формулі є логічна змінна «Конст». Якщо ввести у відповідне їй поле 1, це означатиме, що слід здійснити обчислення, вважаючи, що b = 0.

Якщо потрібно дізнатися прогноз більш ніж одного значення x, то після введення формули слід натиснути не на «Введення», а потрібно набрати на клавіатурі комбінацію «Shift» + «Control» + «Enter» («Введення»).

Деякі особливості

Регресійний аналіз може бути доступним навіть чайникам. Формула Excel для передбачення значення масиву невідомих змінних – «ТЕНДЕНЦІЯ» – може використовуватися навіть тими, хто ніколи не чув про метод найменших квадратів. Достатньо просто знати деякі особливості її роботи. Зокрема:

  • Якщо розташувати діапазон відомих значень змінної y в одному рядку або стовпці, то кожен рядок (стовпець) з відомими значеннями x сприйматиметься програмою як окрема змінна.
  • Якщо у вікні «ТЕНДЕНЦІЯ» не вказаний діапазон з відомими x, то у разі використання функції Excel програма буде розглядати його як масив, що складається з цілих чисел, кількість яких відповідає діапазону із заданими значеннями змінної y.
  • Щоб одержати на виході масив "передбачених" значень, вираз для обчислення тенденції потрібно вводити як формулу масиву.
  • Якщо не вказано нових значень x, то функція «ТЕНДЕНЦІЯ» вважає їх рівним відомим. Якщо вони не задані, то як аргумент береться масив 1; 2; 3; 4;…, який пропорційний діапазону з вже заданими параметрами y.
  • Діапазон, що містить нові значення x, повинен складатися з такої ж чи більшої кількості рядків або стовпців, як діапазон із заданими значеннями y. Іншими словами він має бути пропорційним незалежним змінним.
  • У масиві з відомими значеннями x може бути кілька змінних. Однак якщо йдеться лише про одну, то потрібно, щоб діапазони із заданими значеннями x та y були пропорційні. У разі кількох змінних потрібно, щоб діапазон із заданими значеннями y вміщався в одному стовпчику або в одному рядку.

Функція «ПЕРЕДСКАЗ»

Реалізується за допомогою кількох функцій. Одна з них називається «Предказ». Вона аналогічна «ТЕНДЕНЦІЇ», тобто видає результат обчислень методом найменших квадратів. Однак лише для одного X, для якого невідомо значення Y.

Тепер ви знаєте формули в Excel для чайників, що дозволяють спрогнозувати величину майбутнього значення того чи іншого показника згідно з лінійним трендом.

Метод найменших квадратів є одним з найбільш поширених та найбільш розроблених внаслідок своєї простоти та ефективності методів оцінки параметрів лінійних. Разом з тим, при його застосуванні слід дотримуватись певної обережності, оскільки побудовані з його використанням моделі можуть не задовольняти цілий ряд вимог до якості їх параметрів і, внаслідок цього, недостатньо добре відображати закономірності розвитку процесу.

Розглянемо процедуру оцінки параметрів лінійної економетричної моделі за допомогою методу найменших квадратів докладніше. Така модель у загальному вигляді може бути представлена ​​рівнянням (1.2):

y t = a 0 + a 1 х 1 t +...+ a n х nt + ε t.

Вихідними даними в оцінці параметрів a 0 , a 1 ,..., a n є вектор значень залежної змінної y= (y 1 , y 2 , ... , y T)" і матриця значень незалежних змінних

у якій перший стовпець, що складається з одиниць, відповідає коефіцієнту моделі .

Назву свій метод найменших квадратів отримав, виходячи з основного принципу, якому повинні задовольняти отримані на його основі оцінки параметрів: сума квадратів помилки моделі має бути мінімальною.

Приклади розв'язання задач методом найменших квадратів

приклад 2.1.Торговельне підприємство має мережу, що складається з 12 магазинів, інформацію про діяльність яких представлено у табл. 2.1.

Керівництво підприємства хотіло б знати, як залежить розмір річного від торгової площі магазину.

Таблиця 2.1

Номер магазину

Річний товарообіг, млн руб.

Торгова площа, тис. м2

Рішення шляхом найменших квадратів.Позначимо - річний товарообіг -го магазину, млн руб.; - Торгова площа магазину, тис. м 2 .

Рис.2.1. Діаграма розсіювання для прикладу 2.1

Для визначення форми функціональної залежності між змінними та побудуємо діаграму розсіювання (рис. 2.1).

З діаграми розсіювання можна дійти невтішного висновку про позитивну залежність річного товарообігу від торгової площі (тобто. зростатиме зі зростанням ). Найбільш підходяща форма функціонального зв'язку лінійна.

Інформація щодо подальших розрахунків представлена ​​у табл. 2.2. За допомогою методу найменших квадратів оцінимо параметри лінійної однофакторної економетричної моделі

Таблиця 2.2

Таким чином,

Отже, зі збільшенням торгової площі на 1 тис. м 2 за інших рівних умов середньорічний товарообіг збільшується на 67,8871 млн руб.

приклад 2.2.Керівництво підприємства помітило, що річний товарообіг залежить тільки від торгової площі магазину (див. приклад 2.1), а й від середнього числа відвідувачів. Відповідна інформація представлена ​​у табл. 2.3.

Таблиця 2.3

Рішення.Позначимо - середня кількість відвідувачів-го магазину на день, тис. чол.

Для визначення форми функціональної залежності між змінними та побудуємо діаграму розсіювання (рис. 2.2).

З діаграми розсіяння можна дійти невтішного висновку про позитивну залежність річного товарообігу від середньої кількості відвідувачів щодня (тобто. зростатиме зі зростанням ). Форма функціональної залежності – лінійна.

Мал. 2.2. Діаграма розсіювання для прикладу 2.2

Таблиця 2.4

Загалом необхідно визначити параметри двофакторної економетричної моделі

у t = a 0 + a 1 х 1 t + a 2 х 2 t + ε t

Інформація, потрібна для подальших розрахунків, подана у табл. 2.4.

Оцінимо параметри лінійної двофакторної економетричної моделі за допомогою методу найменших квадратів.

Таким чином,

Оцінка коефіцієнта = 61,6583 показує, що за інших рівних умов зі збільшенням торгової площі на 1 тис. м 2 річний товарообіг збільшиться в середньому на 61,6583 млн руб.

Метод найменших квадратів

Метод найменших квадратів ( МНК, OLS, Ordinary Least Squares) - один із базових методів регресійного аналізу для оцінки невідомих параметрів регресійних моделей за вибірковими даними. Метод ґрунтується на мінімізації суми квадратів залишків регресії.

Необхідно відзначити, що власне методом найменших квадратів можна назвати метод вирішення задачі в будь-якій області, якщо рішення полягає або задовольняє деякий критерій мінімізації суми квадратів деяких функцій від змінних, що шукаються. Тому метод найменших квадратів може застосовуватися також для наближеного представлення (апроксимації) заданої функції іншими (простішими) функціями, при знаходженні сукупності величин, що задовольняють рівнянь або обмежень, кількість яких перевищує кількість цих величин і т.д.

Сутність МНК

Нехай задана деяка (параметрична) модель імовірнісної (регресійної) залежності між (з'ясованою) змінною yі безліччю факторів (що пояснюють змінних) x

де - вектор невідомих параметрів моделі

- Випадкова помилка моделі.

Нехай також є вибіркові спостереження значень вказаних змінних. Нехай – номер спостереження (). Тоді - значення змінних у спостереженні. Тоді при заданих значеннях параметрів b можна розрахувати теоретичні (модельні) значення змінної, що пояснюється y:

Розмір залишків залежить від значень параметрів b.

Сутність МНК (звичайного, класичного) у тому, щоб знайти такі параметри b, у яких сума квадратів залишків (англ. Residual Sum of Squares) буде мінімальною:

У випадку вирішення цього завдання може здійснюватися чисельними методами оптимізації (мінімізації). У цьому випадку говорять про нелінійному МНК(NLS або NLLS – англ. Non-Linear Least Squares). У багатьох випадках можна одержати аналітичне рішення. Для вирішення задачі мінімізації необхідно знайти стаціонарні точки функції, продиференціювавши її за невідомими параметрами b, прирівнявши похідні до нуля і вирішивши отриману систему рівнянь:

Якщо випадкові помилки моделі мають нормальний розподіл , мають однакову дисперсію і некорельовані між собою, МНК оцінки параметрів збігаються з оцінками методу максимальної правдоподібності (ММП).

МНК у разі лінійної моделі

Нехай регресійна залежність є лінійною:

Нехай y- Вектор-стовпець спостережень пояснюваної змінної, а - матриця спостережень факторів (рядки матриці - вектори значень факторів у даному спостереженні, по стовпцях - вектор значень даного фактора у всіх спостереженнях). Матричне уявлення лінійної моделі має вигляд:

Тоді вектор оцінок змінної, що пояснюється, і вектор залишків регресії дорівнюватимуть

відповідно сума квадратів залишків регресії дорівнюватиме

Диференціюючи цю функцію за вектором параметрів та прирівнявши похідні до нуля, отримаємо систему рівнянь (у матричній формі):

.

Вирішення цієї системи рівнянь і дає загальну формулу МНК-оцінок для лінійної моделі:

Для аналітичних цілей виявляється корисним останнє уявлення цієї формули. Якщо у регресійній моделі дані центровані, то цьому поданні перша матриця має сенс вибіркової ковариационной матриці чинників, а друга - вектор ковариаций чинників із залежною змінною. Якщо дані ще й нормованіна СКО (тобто зрештою стандартизовано), то перша матриця має сенс вибіркової кореляційної матриці факторів, другий вектор - вектора вибіркових кореляцій факторів із залежною змінною.

Важлива властивість МНК-оцінок для моделей з константою- лінія побудованої регресії проходить через центр тяжкості вибіркових даних, тобто виконується рівність:

Зокрема, у крайньому випадку, коли єдиним регресором є константа, отримуємо, що МНК-оцінка єдиного параметра (власне константи) дорівнює середньому значенню змінної, що пояснюється. Тобто середнє арифметичне, відоме своїми добрими властивостями із законів великих чисел, також є МНК-оцінкою – задовольняє критерію мінімуму суми квадратів відхилень від неї.

Приклад: найпростіша (парна) регресія

У разі парної лінійної регресії формули розрахунку спрощуються (можна обійтися без матричної алгебри):

Властивості МНК-оцінок

Насамперед, зазначимо, що для лінійних моделей МНК-оцінки є лінійними оцінками, як це випливає з вищенаведеної формули. Для незміщеності МНК-оцінок необхідно і достатньо виконання найважливішої умови регресійного аналізу: умовне за факторами математичне очікування випадкової помилки має дорівнювати нулю. Ця умова, зокрема, виконана, якщо

  1. математичне очікування випадкових помилок дорівнює нулю, та
  2. фактори та випадкові помилки - незалежні випадкові величини.

Друга умова - умова екзогенності факторів - важлива. Якщо це властивість не виконано, можна вважати, що будь-які оцінки будуть вкрай незадовільними: де вони навіть заможними (тобто навіть дуже великий обсяг даних Демшевського не дозволяє отримати якісні оцінки у разі). У класичному випадку робиться сильніша припущення про детермінованість факторів, на відміну від випадкової помилки, що автоматично означає виконання умови екзогенності. У випадку для спроможності оцінок досить виконання умови екзогенності разом із збіжністю матриці до деякої невиродженої матриці зі збільшенням обсягу вибірки до нескінченності.

Для того, щоб крім спроможності та незміщеності, оцінки (звичайного) МНК були ще й ефективними (найкращими в класі лінійних незміщених оцінок) необхідно виконання додаткових властивостей випадкової помилки:

Дані припущення можна сформулювати для коварійної матриці вектора випадкових помилок

Лінійна модель, що задовольняє такі умови, називається класичною. МНК-оцінки для класичної лінійної регресії є незміщеними, заможними та найбільш ефективними оцінками в класі всіх лінійних незміщених оцінок (в англомовній літературі іноді вживають абревіатуру BLUE (Best Linear Unbaised Estimator) - найкраща лінійна незміщена оцінка; у вітчизняній літературі найчастіше наводиться теорема Гауса – Маркова). Як неважко показати, ковариационная матриця вектора оцінок коефіцієнтів дорівнюватиме:

Узагальнений МНК

Метод найменших квадратів припускає широке узагальнення. Замість мінімізації суми квадратів залишків можна мінімізувати деяку позитивно визначену квадратичну форму від вектора залишків де - деяка симетрична позитивно визначена вагова матриця. Звичайний МНК є окремим випадком даного підходу, коли вагова матриця пропорційна одиничній матриці. Як відомо з теорії симетричних матриць (або операторів) для таких матриць існує розкладання. Отже, зазначений функціонал можна уявити наступним чином , тобто цей функціонал можна як суму квадратів деяких перетворених «залишків». Отже, можна назвати клас методів найменших квадратів - LS-методи (Least Squares).

Доведено (теорема Айткена), що для узагальненої лінійної регресійної моделі (у якій на коварійну матрицю випадкових помилок не накладається жодних обмежень) найефективнішими (у класі лінійних незміщених оцінок) є оцінки т.з. узагальненого МНК (ОМНК, GLS - Generalized Least Squares)- LS-метода з ваговою матрицею, що дорівнює зворотній коварійній матриці випадкових помилок: .

Можна показати, що формула ОМНК оцінок параметрів лінійної моделі має вигляд

Коваріаційна матриця цих оцінок відповідно дорівнюватиме

Фактично сутність ОМНК полягає у певному (лінійному) перетворенні (P) вихідних даних та застосуванні звичайного МНК до перетворених даних. Ціль цього перетворення - для перетворених даних випадкові помилки вже задовольняють класичним припущенням.

Зважений МНК

У випадку діагональної вагової матриці (а значить і матриці коварійної випадкових помилок) маємо так званий зважений МНК (WLS - Weighted Least Squares). У разі мінімізується зважена сума квадратів залишків моделі, тобто кожне спостереження отримує «вага», зворотно пропорційний дисперсії випадкової помилки у цьому спостереженні: . Фактично дані перетворюються зважуванням спостережень (розподілом на величину, пропорційну передбачуваному стандартному відхилення випадкових помилок), а зваженим даним застосовується звичайний МНК.

Деякі окремі випадки застосування МНК на практиці

Апроксимація лінійної залежності

Розглянемо випадок, коли в результаті вивчення залежності деякої скалярної величини від деякої скалярної величини (Це може бути, наприклад, залежність напруги від сили струму : де - постійна величина, опір провідника) було проведено вимірювань цих величин, в результаті яких були отримані значення і відповідні їм значення. Дані вимірювань мають бути записані у таблиці.

Таблиця. Результати вимірів.

№ виміру
1
2
3
4
5
6

Питання звучить так: яке значення коефіцієнта можна підібрати, щоб якнайкраще описати залежність? Згідно з МНК це значення має бути таким, щоб сума квадратів відхилень величин від величин

була мінімальною

Сума квадратів відхилень має один екстремум – мінімум, що дозволяє нам використовувати цю формулу. Знайдемо з цієї формули значення коефіцієнта. І тому перетворимо її ліву частину так:

Остання формула дозволяє знайти значення коефіцієнта , що й потрібно завдання.

Історія

На початок ХІХ ст. вчені у відсутності певних правил на вирішення системи рівнянь , у якій число невідомих менше, ніж число рівнянь; до цього часу використовувалися приватні прийоми, що залежали від виду рівнянь і від дотепності обчислювачів, і тому різні обчислювачі, виходячи з тих самих даних спостережень, приходили до різних висновків. Гаусс (1795) належить перше застосування методу, а Лежандр (1805) незалежно відкрив і опублікував його під сучасною назвою (фр. Méthode des moindres quarrés ). Лаплас пов'язав метод з теорією ймовірностей, а американський математик Едрейн (1808) розглянув його теоретико-імовірнісні додатки. Метод поширений і вдосконалений подальшими дослідженнями Енке, Бесселя, Ганзена та інших.

Альтернативне використання МНК

Ідея методу найменших квадратів може бути використана також в інших випадках, які не пов'язані безпосередньо з регресійним аналізом. Справа в тому, що сума квадратів є одним із найпоширеніших заходів близькості для векторів (евклідова метрика в кінцевомірних просторах).

Одне із застосувань - «вирішення» систем лінійних рівнянь, у яких число рівнянь більше числа змінних

де матриця не квадратна, а прямокутна розміру.

Така система рівнянь, у випадку немає рішення (якщо ранг насправді більше числа змінних). Тому цю систему можна «вирішити» тільки в сенсі вибору такого вектора, щоб мінімізувати «відстань» між векторами та . І тому можна застосувати критерій мінімізації суми квадратів різниць лівої та правої частин рівнянь системи, тобто . Неважко показати, що вирішення цього завдання мінімізації призводить до вирішення наступної системи рівнянь

приклад.

Експериментальні дані про значення змінних хі унаведено у таблиці.

В результаті їх вирівнювання отримано функцію

Використовуючи метод найменших квадратів, апроксимувати ці дані лінійною залежністю y=ax+b(Знайти параметри аі b). З'ясувати, яка з двох ліній краще (у сенсі способу менших квадратів) вирівнює експериментальні дані. Зробити креслення.

Суть методу найменших квадратів (МНК).

Завдання полягає у знаходженні коефіцієнтів лінійної залежності, при яких функція двох змінних аі b набуває найменшого значення. Тобто, за даними аі bсума квадратів відхилень експериментальних даних від знайденої прямої буде найменшою. У цьому суть методу найменших квадратів.

Таким чином, рішення прикладу зводиться до знаходження екстремуму функції двох змінних.

Висновок формул знаходження коефіцієнтів.

Складається та вирішується система із двох рівнянь із двома невідомими. Знаходимо приватні похідні функції за змінними аі b, Прирівнюємо ці похідні до нуля.

Вирішуємо отриману систему рівнянь будь-яким методом (наприклад методом підстановкиабо методом Крамера) та отримуємо формули для знаходження коефіцієнтів за методом найменших квадратів (МНК).

За даними аі bфункція набуває найменшого значення. Доказ цього факту наведено нижче за текстом наприкінці сторінки.

Ось і весь спосіб найменших квадратів. Формула для знаходження параметра aмістить суми ,,,і параметр n- Кількість експериментальних даних. Значення цих сум рекомендуємо обчислювати окремо. Коефіцієнт bзнаходиться після обчислення a.

Настав час згадати про вихідний приклад.

Рішення.

У нашому прикладі n=5. Заповнюємо таблицю для зручності обчислення сум, що входять до формул шуканих коефіцієнтів.

Значення у четвертому рядку таблиці отримані множенням значень 2-го рядка на значення 3-го рядка для кожного номера i.

Значення у п'ятому рядку таблиці отримані зведенням у квадрат значень другого рядка для кожного номера i.

Значення останнього стовпця таблиці – це суми значень рядків.

Використовуємо формули методу найменших квадратів для знаходження коефіцієнтів аі b. Підставляємо у них відповідні значення з останнього стовпця таблиці:

Отже, y = 0.165x+2.184- пряма апроксимуюча.

Залишилося з'ясувати, яка з ліній y = 0.165x+2.184або краще апроксимує вихідні дані, тобто провести оцінку шляхом найменших квадратів.

Оцінка похибки способу менших квадратів.

Для цього потрібно обчислити суми квадратів відхилень вихідних даних від цих ліній і менше значення відповідає лінії, яка краще в сенсі методу найменших квадратів апроксимує вихідні дані.

Оскільки , то пряма y = 0.165x+2.184краще наближає вихідні дані.

Графічна ілюстрація методу найменших квадратів (МНК).

На графіках все чудово видно. Червона лінія – це знайдена пряма y = 0.165x+2.184, синя лінія – це , Рожеві точки - це вихідні дані.

На практиці при моделюванні різних процесів - зокрема, економічних, фізичних, технічних, соціальних - широко використовуються ті чи інші способи обчислення наближених значень функцій за відомими значеннями в деяких фіксованих точках.

Такі завдання наближення функцій часто виникають:

    при побудові наближених формул для обчислення значень характерних величин досліджуваного процесу за табличними даними, отриманими в результаті експерименту;

    при чисельному інтегруванні, диференціюванні, розв'язанні диференціальних рівнянь тощо;

    при необхідності обчислення значень функцій у проміжних точках інтервалу, що розглядається;

    щодо значень характерних величин процесу поза розглядуваного інтервалу, зокрема при прогнозуванні.

Якщо для моделювання деякого процесу, заданого таблицею, побудувати функцію, що наближено описує даний процес на основі методу найменших квадратів, вона буде називатися апроксимуючою функцією (регресією), а завдання побудови апроксимуючих функцій - завданням апроксимації.

У цій статті розглянуто можливості пакета MS Excel для вирішення такого роду завдань, крім того, наведено методи та прийоми побудови (створення) регресій для таблично заданих функцій (що є основою регресійного аналізу).

Excel для побудови регресій є дві можливості.

    Додавання обраних регресій (ліній тренду - trendlines) у діаграму, побудовану на основі таблиці даних для досліджуваної характеристики процесу (доступне лише за наявності побудованої діаграми);

    Використання вбудованих статистичних функцій робочого листа Excel, дозволяють отримувати регресії (лінії тренду) безпосередньо з урахуванням таблиці вихідних даних.

Додавання ліній тренду до діаграми

Для таблиці даних, що описують деякий процес і представлених діаграмою, Excel є ефективний інструмент регресійного аналізу, що дозволяє:

    будувати на основі методу найменших квадратів і додавати в діаграму п'ять типів регресій, які з тим чи іншим ступенем точності моделюють досліджуваний процес;

    додавати до діаграми рівняння побудованої регресії;

    визначати ступінь відповідності обраної регресії даних, що відображаються на діаграмі.

На основі даних діаграми Excel дозволяє отримувати лінійний, поліноміальний, логарифмічний, статечний, експоненційний типи регресій, які задаються рівнянням:

y = y(x)

де x - незалежна змінна, яка часто набуває значення послідовності натурального ряду чисел (1; 2; 3; …) і здійснює, наприклад, відлік часу протікання досліджуваного процесу (характеристики).

1 . Лінійна регресія хороша при моделюванні характеристик, значення яких збільшуються або зменшуються з постійною швидкістю. Це найпростіша у побудові модель досліджуваного процесу. Вона будується відповідно до рівняння:

y = mx + b

де m – тангенс кута нахилу лінійної регресії до осі абсцис; b - координата точки перетину лінійної регресії з віссю ординат.

2 . Поліноміальна лінія тренду корисна для опису характеристик, що мають кілька яскраво виражених екстремумів (максимумів та мінімумів). Вибір ступеня полінома визначається кількістю екстремумів досліджуваної характеристики. Так, поліном другого ступеня може добре описати процес, що має лише один максимум або мінімум; поліном третього ступеня - трохи більше двох екстремумів; поліном четвертого ступеня - трохи більше трьох екстремумів тощо.

У цьому випадку лінія тренду будується відповідно до рівняння:

y = c0 + c1x + c2x2 + c3x3 + c4x4 + c5x5 + c6x6

де коефіцієнти c0, c1, c2, c6 - константи, значення яких визначаються в ході побудови.

3 . Логарифмічна лінія тренду успішно застосовується при моделюванні характеристик, значення яких спочатку швидко змінюються, та був поступово стабілізуються.

y = c ln(x) + b

4 . Ступінна лінія тренду дає хороші результати, якщо значення досліджуваної залежності характеризуються постійною зміною швидкості зростання. Прикладом такої залежності може бути графік рівноприскореного руху автомобіля. Якщо серед даних зустрічаються нульові чи негативні значення, використовувати статечну лінію тренда не можна.

Будується відповідно до рівняння:

y = c xb

де коефіцієнти b, с – константи.

5 . Експонентну лінію тренда слід використовувати у тому випадку, якщо швидкість зміни даних безперервно зростає. Для даних, що містять нульові або негативні значення, цей вид наближення також не застосовується.

Будується відповідно до рівняння:

y = c ebx

де коефіцієнти b, с – константи.

При підборі лінії тренду Excel автоматично розраховує значення величини R2, яка характеризує достовірність апроксимації: чим ближче значення R2 до одиниці, тим надійніше лінія тренду апроксимує досліджуваний процес. За потреби значення R2 завжди можна відобразити на діаграмі.

Визначається за такою формулою:

Для додавання лінії тренду до ряду даних слід:

    активізувати побудовану з урахуванням низки даних діаграму, т. е. клацнути у межах області діаграми. У головному меню з'явиться пункт Діаграма;

    після натискання на цьому пункті на екрані з'явиться меню, в якому слід вибрати команду Додати лінію тренда.

Ці ж дії легко реалізуються, якщо навести покажчик миші на графік, що відповідає одному з рядів даних, та клацнути правою кнопкою миші; у контекстному меню, що з'явилося, вибрати команду Додати лінію тренда. На екрані з'явиться діалогове вікно Лінія тренду з відкритою вкладкою Тип (рис. 1).

Після цього необхідно:

Вибрати на вкладці Тип необхідний тип лінії тренда (за замовчуванням вибирається тип Лінійний). Для Поліноміального типу в полі Ступінь слід задати ступінь обраного полінома.

1 . У полі Побудований ряд перераховані всі ряди даних аналізованої діаграми. Для додавання лінії тренда до конкретного ряду даних слід у полі Побудований на ряді вибрати його ім'я.

При необхідності, перейшовши на вкладку Параметри (мал. 2), можна для лінії тренда задати такі параметри:

    змінити назву лінії тренду в полі Назва апроксимуючої (згладженої) кривої.

    задати кількість періодів (вперед чи назад) для прогнозу у полі Прогноз;

    вивести в ділянку діаграми рівняння лінії тренду, для чого слід включити прапорець показати рівняння на діаграмі;

    вивести в ділянку діаграми значення достовірності апроксимації R2, для чого слід включити прапорець помістити на діаграму величину достовірності апроксимації (R^2);

    задати точку перетину лінії тренду з віссю Y, для чого слід включити прапорець перетин кривої з віссю Y в точці;

    клацнути на кнопці OK, щоб закрити діалогове вікно.

Для того, щоб розпочати редагування вже побудованої лінії тренду, існує три способи:

    скористатися командою Виділена лінія тренду з меню Формат, вибравши попередньо лінію тренда;

    вибрати команду Формат лінії тренда з контекстного меню, яке викликається клацанням правої кнопки миші по лінії тренду;

    подвійним клацанням по лінії тренду.

На екрані з'явиться діалогове вікно Формат лінії тренду (рис. 3), що містить три вкладки: Вид, Тип, Параметри, причому вміст останніх двох повністю збігається з аналогічними вкладками діалогового вікна Лінія тренду (рис.1-2). На вкладці Вигляд можна задати тип лінії, її колір та товщину.

Для видалення вже побудованої лінії тренда слід вибрати лінію тренда, що видаляється, і натиснути клавішу Delete.

Перевагами розглянутого інструменту регресійного аналізу є:

    відносна легкість побудови на діаграмах лінії тренду без створення нею таблиці даних;

    досить широкий перелік типів запропонованих ліній трендів, причому цей перелік входять найчастіше використовувані типи регресії;

    можливість прогнозування поведінки досліджуваного процесу на довільне (не більше здорового глузду) кількість кроків уперед, і навіть назад;

    можливість одержання рівняння лінії тренда в аналітичному вигляді;

    можливість, за потреби, отримання оцінки достовірності проведеної апроксимації.

До недоліків можна віднести такі моменти:

    побудова лінії тренду здійснюється лише за наявності діаграми, побудованої ряді даних;

    процес формування рядів даних для досліджуваної характеристики на основі отриманих для неї рівнянь ліній тренду дещо захаращений: шукані рівняння регресій оновлюються при кожній зміні значень вихідного ряду даних, але тільки в межах області діаграми, тоді як ряд даних, сформований на основі старого рівняння лінії тренда залишається без зміни;

    у звітах зведених діаграм при зміні представлення діаграми або пов'язаного звіту зведеної таблиці наявні лінії тренду не зберігаються, тобто до проведення ліній тренду чи іншого форматування звіту зведених діаграм слід переконатися, що макет звіту відповідає необхідним вимогам.

Лініями тренду можна доповнити ряди даних, представлені на діаграмах типу графік, гістограма, плоскі ненормовані діаграми з областями, лінійчасті, точкові, пухирцеві та біржові.

Не можна доповнити лініями тренду ряди даних на об'ємних, нормованих, пелюсткових, кругових та кільцевих діаграмах.

Використання вбудованих функцій Excel

В Excel є також інструмент регресійного аналізу для побудови ліній тренду поза ділянкою діаграми. З цією метою можна використовувати низку статистичних функцій робочого листа, проте вони дозволяють будувати лише лінійні чи експоненційні регресії.

В Excel є кілька функцій для побудови лінійної регресії, зокрема:

    ТЕНДЕНЦІЯ;

  • Нахил і відрізок.

А також кілька функцій для побудови експоненційної лінії тренду, зокрема:

    ЛДРФПРИБЛ.

Слід зазначити, що прийоми побудови регресій за допомогою функцій ТЕНДЕНЦІЯ та РОСТ практично збігаються. Те саме можна сказати і про пару функцій Лінейн і ЛГРФПРИБЛ. Для чотирьох цих функцій під час створення таблиці значень використовуються такі можливості Excel, як формули масивів, що дещо захаращує процес побудови регресій. Зауважимо також, що побудова лінійної регресії, на наш погляд, найлегше здійснити за допомогою функцій НАКЛОН і ВІДРІЗОК, де перша визначає кутовий коефіцієнт лінійної регресії, а друга - відрізок, що відсікається регресією на осі ординат.

Достоїнствами інструменту вбудованих функцій для регресійного аналізу є:

    досить простий однотипний процес формування рядів даних досліджуваної характеристики всім вбудованих статистичних функцій, що задають лінії тренда;

    стандартна методика побудови ліній тренду на основі сформованих рядів даних;

    можливість прогнозування поведінки досліджуваного процесу необхідну кількість кроків уперед чи назад.

А до недоліків відноситься те, що в Excel немає вбудованих функцій для створення інших (крім лінійного та експонентного) типів ліній тренду. Ця обставина часто дозволяє підібрати досить точну модель досліджуваного процесу, і навіть отримати близькі до реальності прогнози. Крім того, при використанні функцій ТЕНДЕНЦІЯ та РОСТ не відомі рівняння ліній тренду.

Слід зазначити, що автори не ставили за мету статті викладення курсу регресійного аналізу з тим чи іншим ступенем повноти. Основне її завдання - на конкретних прикладах показати можливості пакета Excel під час вирішення завдань апроксимації; продемонструвати, якими ефективними інструментами для побудови регресій та прогнозування має Excel; проілюструвати, як щодо легко такі завдання можуть бути вирішені навіть користувачем, який не володіє глибокими знаннями регресійного аналізу.

Приклади вирішення конкретних завдань

Розглянемо рішення конкретних завдань за допомогою перерахованих інструментів Excel.

Завдання 1

З таблицею даних про прибуток автотранспортного підприємства за 1995-2002 рр. необхідно виконати такі дії.

    Побудувати діаграму.

    У діаграму додати лінійну та поліноміальну (квадратичну та кубічну) лінії тренду.

    Використовуючи рівняння ліній тренду, отримати табличні дані щодо прибутку підприємства для кожної лінії тренду за 1995-2004 роки.

    Скласти прогноз щодо прибутку підприємства на 2003 та 2004 роки.

Рішення завдання

    У діапазон осередків A4:C11 робочого листа Excel вводимо робочу таблицю, подану на рис. 4.

    Виділивши діапазон осередків В4: С11, будуємо діаграму.

    Активізуємо побудовану діаграму та за описаною вище методикою після вибору типу лінії тренду в діалоговому вікні Лінія тренду (див. рис. 1) по черзі додаємо в діаграму лінійну, квадратичну та кубічну лінії тренду. У цьому ж діалоговому вікні відкриваємо вкладку Параметри (див. рис. 2), в полі Назва апроксимуючої (згладженої) кривої вводимо найменування тренда, що додається, а в полі Прогноз вперед на: періодів задаємо значення 2, так як планується зробити прогноз по прибутку на два року наперед. Для виведення в області діаграми рівняння регресії та значення достовірності апроксимації R2 включаємо прапорці показувати рівняння на екрані та помістити на діаграму величину достовірності апроксимації (R^2). Для кращого візуального сприйняття змінюємо тип, колір та товщину побудованих ліній тренду, для чого скористаємось вкладкою Вид діалогового вікна Формат лінії тренду (див. рис. 3). Отримана діаграма з доданими лініями тренду представлена ​​на рис. 5.

    Для отримання табличних даних щодо прибутку підприємства для кожної лінії тренду за 1995-2004 роки. скористаємось рівняннями ліній тренду, представленими на рис. 5. Для цього в комірки діапазону D3:F3 вводимо текстову інформацію про тип обраної лінії тренду: Лінійний тренд, Квадратичний тренд, Кубічний тренд. Далі вводимо в комірку D4 формулу лінійної регресії і, використовуючи маркер заповнення, копіюємо цю формулу з відносними посиланнями діапазону комірок D5:D13. Слід зазначити, що кожному осередку з формулою лінійної регресії з діапазону осередків D4:D13 як аргумент стоїть відповідний осередок з діапазону A4:A13. Аналогічно для квадратичної регресії заповнюється діапазон осередків E4: E13, а кубічної регресії - діапазон осередків F4: F13. Таким чином, складено прогноз щодо прибутку підприємства на 2003 та 2004 роки. за допомогою трьох трендів. Отримана таблиця значень представлена ​​рис. 6.

Завдання 2

    Побудувати діаграму.

    У діаграму додати логарифмічну, статечну та експоненційну лінії тренду.

    Вивести рівняння отриманих ліній тренду, і навіть величини достовірності апроксимації R2 кожної з них.

    Використовуючи рівняння ліній тренду, отримати табличні дані про прибуток підприємства кожної лінії тренду за 1995-2002 гг.

    Скласти прогноз про прибуток підприємства на 2003 та 2004 рр., використовуючи ці лінії тренду.

Рішення завдання

Дотримуючись методики, наведеної при вирішенні задачі 1, отримуємо діаграму з доданими до неї логарифмічної, статечної та експоненційної лініями тренду (рис. 7). Далі, використовуючи отримані рівняння ліній тренду, заповнюємо таблицю значень із прибутку підприємства, включаючи прогнозовані значення на 2003 та 2004 роки. (Рис. 8).

На рис. 5 та рис. видно, що моделі з логарифмічним трендом відповідає найменше значення достовірності апроксимації.

R2 = 0,8659

Найбільші значення R2 відповідають моделям з поліноміальним трендом: квадратичним (R2 = 0,9263) і кубічним (R2 = 0,933).

Завдання 3

З таблицею даних про прибуток автотранспортного підприємства за 1995-2002 рр., що наведена в задачі 1, необхідно виконати такі дії.

    Отримати ряди даних для лінійної та експоненційної лінії тренду з використанням функцій ТЕНДЕНЦІЯ та РОСТ.

    Використовуючи функції ТЕНДЕНЦІЯ та РОСТ, скласти прогноз про прибуток підприємства на 2003 та 2004 роки.

    Для вихідних даних та отриманих рядів даних побудувати діаграму.

Рішення завдання

Скористайтеся робочою таблицею задачі 1 (див. рис. 4). Почнемо з функції ТЕНДЕНЦІЯ:

    виділяємо діапазон осередків D4:D11, який слід заповнити значеннями функції ТЕНДЕНЦІЯ, що відповідають відомим даним про прибуток підприємства;

    викликаємо команду Функція з меню Вставка. У діалоговому вікні Майстер функцій виділяємо функцію ТЕНДЕНЦІЯ з категорії Статистичні, після чого клацаємо по кнопці ОК. Цю операцію можна здійснити натисканням кнопки (Вставка функції) стандартної панелі інструментів.

    У діалоговому вікні, що з'явилося Аргументи функції вводимо в поле Відомі_значення_y діапазон осередків C4:C11; у полі Відомі_значення_х - діапазон осередків B4: B11;

    щоб формула, що вводиться, стала формулою масиву, використовуємо комбінацію клавіш + + .

Введена нами формула у рядку формул матиме вигляд: =(ТЕНДЕНЦІЯ(C4:C11;B4:B11)).

В результаті діапазон комірок D4:D11 заповнюється відповідними значеннями функції ТЕНДЕНЦІЯ (рис. 9).

Для складання прогнозу про прибуток підприємства на 2003 та 2004 роки. необхідно:

    виділити діапазон осередків D12:D13, куди заноситимуться значення, прогнозовані функцією ТЕНДЕНЦІЯ.

    викликати функцію ТЕНДЕНЦІЯ і в діалоговому вікні, що з'явилося Аргументи функції ввести в поле Відомі_значення_y - діапазон осередків C4:C11; у полі Відомі_значення_х - діапазон осередків B4: B11; а в полі Нові_значення_х - діапазон осередків B12: B13.

    перетворити цю формулу на формулу масиву, використовуючи комбінацію клавіш Ctrl + Shift + Enter.

    Введена формула матиме вигляд: =(ТЕНДЕНЦІЯ(C4:C11;B4:B11;B12:B13)), а діапазон осередків D12:D13 заповниться прогнозованими значеннями функції ТЕНДЕНЦІЯ (див. рис. 9).

Аналогічно заповнюється ряд даних за допомогою функції РОСТ, яка використовується при аналізі нелінійних залежностей і працює так само, як її лінійний аналог ТЕНДЕНЦІЯ.

На рис.10 представлена ​​таблиця як показу формул.

Для вихідних даних та отриманих рядів даних побудовано діаграму, зображену на рис. 11.

Завдання 4

З таблицею даних про вступ до диспетчерської служби автотранспортного підприємства заявок на послуги за період з 1 до 11 числа поточного місяця необхідно виконати такі дії.

    Отримати ряди даних для лінійної регресії: використовуючи функції НАКЛОН та ВІДРІЗОК; використовуючи функцію Лінейн.

    Отримати ряд даних для експоненційної регресії з використанням функції ЛГРФПРИБЛ.

    Використовуючи вищезгадані функції, скласти прогноз про надходження заявок до диспетчерської служби на період з 12 до 14 числа поточного місяця.

    Для вихідних та отриманих рядів даних побудувати діаграму.

Рішення завдання

Зазначимо, що, на відміну від функцій ТЕНДЕНЦІЯ і РОСТ, жодна з перерахованих вище функцій (НАХИЛ, ВІДРІЗОК, ЛІНІЙН, ЛГРФПРИБ) не є регресією. Ці функції грають лише допоміжну роль, визначаючи необхідні параметри регресії.

Для лінійної та експоненційної регресій, побудованих за допомогою функцій НАКЛОН, ВІДРІЗОК, ЛІНІЙН, ЛГРФПРИБ, зовнішній вигляд їх рівнянь завжди відомий, на відміну від лінійної та експоненційної регресій, що відповідають функціям ТЕНДЕНЦІЯ та РОЗДІЛ.

1 . Побудуємо лінійну регресію, яка має рівняння:

y = mx+b

за допомогою функцій НАХИЛ і ВІДРІЗОК, причому кутовий коефіцієнт регресії m визначається функцією НАХИЛ, а вільний член b - функцією ВІДРІЗОК.

Для цього здійснюємо такі дії:

    заносимо вихідну таблицю в діапазон осередків A4: B14;

    значення параметра m буде визначатися в комірці С19. Вибираємо з категорії Статистичні функції Нахил; заносимо діапазон осередків B4:B14 у поле відомі_значення_y та діапазон осередків А4:А14 у поле відомі_значення_х. У комірку С19 буде введена формула: = НАХЛАН(B4:B14;A4:A14);

    за аналогічною методикою визначається значення параметра b у комірці D19. І її вміст матиме вигляд: = відрізок (B4: B14; A4: A14). Таким чином, необхідні для побудови лінійної регресії значення параметрів m і b зберігатимуться відповідно в осередках C19, D19;

    далі заносимо в комірку С4 формулу лінійної регресії як: =$C*A4+$D. У цій формулі осередки С19 та D19 записані з абсолютними посиланнями (адреса осередку не повинна змінюватися при можливому копіюванні). Знак абсолютного посилання $ можна набити або з клавіатури або за допомогою клавіші F4, попередньо встановивши курсор на адресу комірки. Скориставшись маркером заповнення, скопіюємо цю формулу в діапазон осередків С4:С17. Отримуємо потрібний ряд даних (рис. 12). У зв'язку з тим, що кількість заявок - ціле число, слід встановити на вкладці Число вікна Формат осередків числовий формат із числом десяткових знаків 0.

2 . Тепер збудуємо лінійну регресію, задану рівнянням:

y = mx+b

за допомогою функції ЛІНІЙН.

Для цього:

    вводимо в діапазон осередків C20:D20 функцію ЛІНІЙН як формулу масиву: =(ЛІНЕЙН(B4:B14;A4:A14)). В результаті отримуємо в комірці C20 значення параметра m, а в комірці D20 значення параметра b;

    вводимо в комірку D4 формулу: = $ C * A4 + $ D;

    копіюємо цю формулу за допомогою маркера заповнення в діапазон осередків D4: D17 і отримуємо ряд даних, що шукається.

3 . Будуємо експоненційну регресію, яка має рівняння:

за допомогою функції ЛГРФПРИБЛ воно виконується аналогічно:

    в діапазон осередків C21:D21 вводимо функцію ЛГРФПРИБЛ як формулу масиву: =( ЛГРФПРИБЛ (B4:B14;A4:A14)). При цьому в комірці C21 буде визначено значення параметра m, а в комірці D21 значення параметра b;

    у комірку E4 вводиться формула: =$D*$C^A4;

    за допомогою маркера заповнення ця формула копіюється в діапазон клітин E4:E17, де і розташується ряд даних для експоненційної регресії (див. рис. 12).

На рис. 13 наведено таблицю, де видно використовувані нами функції з необхідними діапазонами осередків, а також формули.

Величина R 2 називається коефіцієнтом детермінації.

Завданням побудови регресійної залежності є знаходження вектора коефіцієнтів m моделі (1) при якому коефіцієнт R набуває максимального значення.

Для оцінки значущості R застосовується F-критерій Фішера, що обчислюється за формулою

де n- розмір вибірки (кількість експериментів);

k – число коефіцієнтів моделі.

Якщо F перевищує деяке критичне значення для даних nі kі прийнятої довірчої ймовірності, величина R вважається істотною. Таблиці критичних значень F наводяться у довідниках математичної статистики.

Отже, значимість R визначається як його величиною, а й співвідношенням між кількістю експериментів і кількістю коефіцієнтів (параметрів) моделі. Дійсно, кореляційне відношення для n=2 для простої лінійної моделі дорівнює 1 (через 2 точки на площині завжди можна провести єдину пряму). Однак, якщо експериментальні дані є випадковими величинами, довіряти такому значенню R слід з великою обережністю. Зазвичай отримання значимого R і достовірної регресії прагнуть до того, щоб кількість експериментів істотно перевищувала кількість коефіцієнтів моделі (n>k).

Для побудови лінійної регресійної моделі необхідно:

1) підготувати список з n рядків і m стовпців, що містить експериментальні дані (стовпець, що містить вихідну величину Yмає бути або першим, або останнім у списку); Наприклад візьмемо дані попереднього завдання, додавши стовпець під назвою "№ періоду", пронумеруємо номери періодів від 1 до 12. (це значення Х)

2) звернутися до меню Дані/Аналіз даних/Регресія

Якщо пункт "Аналіз даних" у меню "Сервіс" відсутній, слід звернутися до пункту "Надбудови" того ж меню і встановити прапорець "Пакет аналізу".

3) у діалоговому вікні "Регресія" задати:

· Вхідний інтервал Y;

· Вхідний інтервал X;

· Вихідний інтервал - верхній лівий осередок інтервалу, в який будуть розміщуватися результати обчислень (рекомендується розмістити на новому робочому аркуші);

4) натиснути "Ok" та проаналізувати результати.