Построить развертку боковой. Развертки кривых поверхностей. Куничан Г., Идт Л.И. Построение разверток поверхностей

Разверткой поверхности называется плоская фигура, образованная последовательным совмещением поверхности с плоскостью без разрывов и складок. При развертывании поверхность рассматривается как плоская, но нерастяжимая. Цель развертывания поверхностей – создание моделей поверхностей из листового материала путем последующего изгибания и «свертывания» их разверток.

Основные свойства разверток:

Прямая на поверхности переходит в прямую на развертке;

Параллельные прямые на поверхности переходят в параллельные прямые на развертке;

Длины отрезка линии на поверхности и той же линии на развертке равны;

Углы между линиями на поверхности и между соответствующими линиями на развертке равны;

Площадь развертки равна площади поверхности;

Все размеры на развертке имеют натуральную величину.

Все поверхности подразделяются на развертываемые и неразвертываемые.

К развертываемым поверхностям относятся:

Гранные поверхности (пирамиды, призмы и т.д.), т.к. плоские элементы многогранника точно совмещаются с плоскостью развертки. В этом случае развертка называется точной.

Линейчатые поверхности (цилиндрические, конические и поверхности с ребром возврата), т.е. это поверхности, у которых смежные образующие-прямые параллельны или пересекаются.

К неразвертывающимся поверхностям относятся все остальные линейчатые, а также нелинейчатые поверхности (цилиндроиды, коноиды, сфера). Развертки этих поверхностей в этом случае называются приближенными или условными.

1.5.1 Развертка поверхностей многогранников

При построении разверток многогранников определяют натуральную величину всех его граней (плоских многоугольников). При этом используют различные способы преобразования чертежа. Выбор тех или иных способов зависит от вида многогранника и его расположения относительно плоскостей проекций.

1.5.1.1 Развертка поверхности призмы

Существует два способа развертки призмы: способ «нормального сечения» и способ «раскатки».

Способ «нормального сечения» используют для развертки поверхности призм общего положения. В этом случае строится нормальное сечение призмы (т.е. вводится плоскость, расположенная перпендикулярно боковым ребрам призмы) и определяются натуральные величины сторон многоугольника этого нормального сечения.

Пример выполнения развертки трехгранной призмы общего положения способом «нормального сечения» рассмотрим в задаче согласно рисунка 1.5.1

Обратим внимание на то, что в нашем случае боковые ребра призмы являются фронталями, т.е. на плоскость П 2 они проецируются в натуральную величину.

1) Во фронтальной плоскости проекций построим фронтально проецирующую плоскость γ(γ 1 ) , которая одновременно перпендикулярна боковым ребрам призмы AD , CF , BE . Полученное нормальное сечение выразится в виде треугольника 123 . Методом плоско-параллельного перемещения определим его натуральную величину в соответствии с рисунком 1.5.2.

2) Все стороны нормального сечения последовательно отложим на прямой: 1 0 2 0 =1 1 1 2 1 1 ; 2 0 3 0 =2 1 1 3 1 1 ; 3 0 1 0 =3 1 1 1 1 1 .

3) Через точки 1 0 ,2 0 ,3 0 проведем прямые, перпендикулярные прямой 1 0 -1 0 и отложим на них натуральную величину боковых ребер: 1 0 D 0 =1 2 D 2 и 1 0 A 0 = 1 2 A 2 ; 2 0 F 0 = 2 2 F 2 и 2 0 C 0 = 2 2 C 2 ; 3 0 E 0 = 3 2 E 2 и 3 0 B 0 = 3 2 B 2 .

4) Полученные точки верхнего и нижнего оснований призмы соединим прямыми A 0 B 0 C 0 и D 0 F 0 E 0 . Плоская фигура A 0 B 0 C 0 D 0 F 0 E 0 является искомой разверткой боковой поверхности данной призмы. Для построения полной развертки необходимо к развертке боковой поверхности пристроить натуральные величины оснований. Для этого воспользуемся полученными на развертке натуральными величинами их сторон A 0 C 0 , C 0 B 0 , B 0 A 0 и D 0 F 0 , F 0 E 0 , E 0 D 0 в соответствии с рисунком 1.5.3

Рисунок 1.5.1

Рисунок 1.5.2

Рисунок 1.5.3 – Развертка призмы способом «нормального сечения»

Способ «раскатки». Этот способ удобен для построения разверток призм с основанием, лежащим в плоскости уровня. Суть способа заключается в последовательном совмещением боковых граней с плоскостью чертежа путем поворота их вокруг соответствующих ребер призмы (рисунок 1.5.4).

Этим способом построена развертка поверхности призмы ABCDEF , боковые ребра которой являются фронталями, а нижнее основание лежит в горизонтальной плоскости (рисунок 1.5.5).

1) Боковые грани призмы совместим с фронтальной плоскостью, проходящей через ребро AD . Это удобно в этом случае, т.к. фронтальные проекции боковых ребер призмы равны их истинной длине. Тогда ребро A 0 D 0 развертки будет совпадать с фронтальной проекцией ребра AD (A 2 D 2 ) .

2) Для определения на развертке истиной величины боковой грани ADEB вращаем ее вокруг ребра AD до положения, параллельного фронтальной плоскости проекций. Чтобы определить на развертке положение точки B 0 , из точки B 2 восстанавливаем перпендикуляр к A 2 D 2 . Точка B 0 будет найдена в пересечении этого перпендикуляра с дугой окружности радиуса R 1 , равного истиной величине ребра AB и проведенной из точки A 2 , как из центра.

3) Точка E 0 будет определяться на развертке как результат пересечения прямой B 0 E 0 параллельной фронтальной проекцией ребра BE (B 2 E 2 ), и перпендикуляра, восстановленного из точки E 2 к A 2 D 2 .

4) Точки C 0 и A 0 построены аналогично точке B 0 в пересечении перпендикуляров из точек C 2 и A 2 к фронтальным проекциям ребер, с дугами окружностей, проведенных из точек B 0 и C 0 как из центров радиусами R 2 и R 3 , равными соответственно ребрам BC и CA . Точки F 0 и D 0 определяются аналогично точке E 0 .

5) Соединив последовательно совмещенные вершины ломаными линиями, получим развертку боковой поверхности призмы A 0 B 0 C 0 A 0 D 0 F 0 E 0 D 0 . При необходимости можно получить полную развертку призмы, присоединив к ней натуральные величины обоих оснований.

Если боковые ребра призмы занимают общее положение, то предварительным преобразованием чертежа их надо привести в положение линий уровня.

Развертка поверхности конуса - это плоская фигура, полученная путем совмещения боковой поверхности и основания конуса с некоторой плоскостью.

Варианты построения развертки:

Развертка прямого кругового конуса

Развертка боковой поверхности прямого кругового конуса представляет собой круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ определяется по формуле φ=360*R/l, где R – радиус окружности основания конуса.

В ряде задач начертательной геометрии предпочтительным решением является аппроксимация (замена) конуса вписанной в него пирамидой и построение приближенной развертки, на которую удобно наносить линии, лежащие на конической поверхности.

Алгоритм построения

  1. Вписываем в коническую поверхность многоугольную пирамиду. Чем больше боковых граней у вписанной пирамиды, тем точнее соответствие между действительной и приближенной разверткой.
  2. Строим развертку боковой поверхности пирамиды способом треугольников . Точки, принадлежащие основанию конуса, соединяем плавной кривой.

Пример

На рисунке ниже в прямой круговой конус вписана правильная шестиугольная пирамида SABCDEF, и приближенная развертка его боковой поверхности состоит из шести равнобедренных треугольников – граней пирамиды.

Рассмотрим треугольник S 0 A 0 B 0 . Длины его сторон S 0 A 0 и S 0 B 0 равны образующей l конической поверхности. Величина A 0 B 0 соответствует длине A’B’. Для построения треугольника S 0 A 0 B 0 в произвольном месте чертежа откладываем отрезок S 0 A 0 =l, после чего из точек S 0 и A 0 проводим окружности радиусом S 0 B 0 =l и A 0 B 0 = A’B’ соответственно. Соединяем точку пересечения окружностей B 0 с точками A 0 и S 0 .

Грани S 0 B 0 C 0 , S 0 C 0 D 0 , S 0 D 0 E 0 , S 0 E 0 F 0 , S 0 F 0 A 0 пирамиды SABCDEF строим аналогично треугольнику S 0 A 0 B 0 .

Точки A, B, C, D, E и F, лежащие в основании конуса, соединяем плавной кривой – дугой окружности, радиус которой равен l.

Развертка наклонного конуса

Рассмотрим порядок построения развертки боковой поверхности наклонного конуса методом аппроксимации (приближения).

Алгоритм

  1. Вписываем в окружность основания конуса шестиугольник 123456. Соединяем точки 1, 2, 3, 4, 5 и 6 с вершиной S. Пирамида S123456, построенная таким образом, с некоторой степенью приближения является заменой конической поверхности и используется в этом качестве в дальнейших построениях.
  2. Определяем натуральные величины ребер пирамиды, используя способ вращения вокруг проецирующей прямой: в примере используется ось i, перпендикулярная горизонтальной плоскости проекций и проходящая через вершину S.
    Так, в результате вращения ребра S5 его новая горизонтальная проекция S’5’ 1 занимает положение, при котором она параллельна фронтальной плоскости π 2 . Соответственно, S’’5’’ 1 – натуральная величина S5.
  3. Строим развертку боковой поверхности пирамиды S123456, состоящую из шести треугольников: S 0 1 0 6 0 , S 0 6 0 5 0 , S 0 5 0 4 0 , S 0 4 0 3 0 , S 0 3 0 2 0 , S 0 2 0 1 0 . Построение каждого треугольника выполняется по трем сторонам. Например, у △S 0 1 0 6 0 длина S 0 1 0 =S’’1’’ 0 , S 0 6 0 =S’’6’’ 1 , 1 0 6 0 =1’6’.

Степень соответствия приближенной развертки действительной зависит от количества граней вписанной пирамиды. Число граней выбирают, исходя из удобства чтения чертежа, требований к его точности, наличия характерных точек и линий, которые нужно перенести на развертку.

Перенос линии с поверхности конуса на развертку

Линия n, лежащая на поверхности конуса, образована в результате его пересечения с некоторой плоскостью (рисунок ниже). Рассмотрим алгоритм построения линии n на развертке.

Алгоритм

  1. Находим проекции точек A, B и C, в которых линия n пересекает ребра вписанной в конус пирамиды S123456.
  2. Определяем натуральную величину отрезков SA, SB, SC способом вращения вокруг проецирующей прямой. В рассматриваемом примере SA=S’’A’’, SB=S’’B’’ 1 , SC=S’’C’’ 1 .
  3. Находим положение точек A 0 , B 0 , C 0 на соответствующих им ребрах пирамиды, откладывая на развертке отрезки S 0 A 0 =S’’A’’, S 0 B 0 =S’’B’’ 1 , S 0 C 0 =S’’C’’ 1 .
  4. Соединяем точки A 0 , B 0 , C 0 плавной линией.

Развертка усеченного конуса

Описываемый ниже способ построения развертки прямого кругового усеченного конуса основан на принципе подобия.

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Алтайский государственный технический университет им. И.И. Ползунова»

Бийский технологический институт (филиал)

Г.И. Куничан, Л.И. Идт

ПОСТРОЕНИЕ РАЗВЕРТОК

ПОВЕРХНОСТЕЙ

171200, 120100, 171500, 170600

УДК 515.0(075.8)

Куничан Г.И., Идт Л.И. Построение разверток поверхностей:

Методические рекомендации по курсу начертательной геометрии для самостоятельной работы студентов механических специальностей 171200, 120100, 171500, 170600.

Алт. гос. техн. ун-т, БТИ. – Бийск.

Изд-во Алт. гос. техн. ун-та, 2005. – 22с.

В методических рекомендациях подробно рассмотрены примеры построения разверток многогранников и поверхностей вращения по теме построение разверток поверхностей курса начертательной геометрии, которые изложены в виде лекционного материала. Методические рекомендации предлагаются для самостоятельной работы студентов дневной, вечерней и заочной форм обучения.

Рассмотрены и одобрены

на заседании

технической

Протокол №20 от 05.02.2004 г.

Рецензент: завкафедрой МРСиИ БТИ АлтГТУ, к.т.н. Фирсов А.М.

 Куничан Г.И., Идт Л.И., Леонова Г.Д., 2005

БТИ АлтГТУ, 2005

ОБЩИЕ ПОНЯТИЯ О РАЗВЕРТЫВАНИИ ПОВЕРХНОСТЕЙ

Представляя поверхность в виде гибкой, но нерастяжимой пленки, можно говорить о таком преобразовании поверхности, при котором поверхность совмещается
с плоскостью без складок и разрывов. Следует указать, что далеко не каждая поверхность допускает такое преобразование. Ниже будет показано, какие типы поверхностей возможно совместить с плоскостью при помощи изгибания, без растяжения и сжатия.

Поверхности, которые допускают такое преобразование, называются развертывающимися , а фигура на плоскости, в которую поверхность преобразуется, называется разверткой поверхности .

Построение разверток поверхностей имеет большое практическое значение при конструировании различных изделий из листового материала. При этом необходимо отметить, что часто приходится изготовлять из листового материала не только развертывающиеся поверхности, но и неразвертывающиеся поверхности. В этом случае неразвертывающуюся поверхность разбивают на части, которые можно приближенно заменить развертывающимися поверхностями, а затем строят развертки этих частей.

К числу развертывающихся линейчатых поверхностей относятся цилиндрические, конические и торы.

Все остальные кривые поверхности не развертываются на плоскость и поэтому при необходимости изготовления этих поверхностей из листового материала их приближенно заменяют развертывающимися поверхностями.

1 ПОСТРОЕНИЕ РАЗВЕРТОК ПИРАМИДАЛЬНЫХ

ПОВЕР ХНОСТЕЙ

Построение разверток пирамидальных поверхностей приводит к многократному построению натурального вида треугольников, из которых состоит данная пирамидальная поверхность или многогранная поверхность, вписанная (или описанная) в какую-либо коническую или линейчатую поверхность, которой заменяется указанная поверхность. Описываемый способ приводит к разбивке поверхности на треугольники, он называется способом треугольников (триангуляции).

Покажем применение этого способа для пирамидальных поверхностей. Если пренебречь графическими ошибками, то построенные развертки таких поверхностей можно считать точными.

Пример 1 . Построить полную развертку поверхности части треугольной пирамиды SABC .

Так как боковые грани пирамиды являются треугольниками, то для построения ее развертки нужно построить натуральные виды этих треугольников. Для этого предварительно должны быть определены натуральные величины боковых ребер. Натуральную величину боковых ребер можно определить при помощи прямоугольных треугольников, в каждом из которых одним катетом является превышение точки S над точками А , В и С , а вторым катетом – отрезок, равный горизонтальной проекции соответствующего бокового ребра (рисунок 1).

Так как стороны нижнего основания являются горизонталями, то их натуральные величины можно измерить на плоскости П 1 . После этого каждая боковая грань строится как треугольник по трем сторонам. Развертка боковой поверхности пирамиды получается в виде ряда примыкающих один к другому треугольников с общей вершиной S (S 2 C*, S 2 A*, S 2 B* – являются натуральными величинами ребер пира-миды).

Для нанесения на развертку точек D , E и F , соответствующих вершинам сечения пирамиды плоскостью, нужно предварительно определить их натуральные расстояния от вершины S D* , E* и F* на соответствующие натуральные величины боковых ребер.

Рисунок 1

После построения развертки боковой поверхности усеченной части пирамиды, следует пристроить к ней треугольники АВС и DEF . Треугольник АВС является основанием усеченной пирамиды и изображен на горизонтальной плоскости проекций в натуральную величину.

2 ПОСТРОЕНИЕ РАЗВЕРТОК КОНИЧЕСКИХ

ПОВЕРХНОСТЕЙ

Рассмотрим построение разверток конических поверхностей. Несмотря на то, что конические поверхности являются развертывающимися и, следовательно, имеют теоретически точные развертки, практически строят их приближенные развертки, пользуясь способом треугольников . Для этого заменяют коническую поверхность вписанной в нее поверхностью пирамиды.

Пример 2 . Построить развертку прямого конуса с отсеченной вершиной (рису-нок 2а, б).

1. Необходимо предварительно построить развертку боковой поверхности конуса. Этой разверткой является круговой сектор, радиус которого равен натуральной величине образующей конуса, а длина дуги равна длине окружности основания конуса. Практически дугу сектора определяют при помощи ее хорд, которые принимают равными хордам, стягивающим дуги основания конуса. Иначе говоря, поверхность конуса заменяется поверхностью вписанной пирамиды.

2. Чтобы на развертку нанести точки фигуры сечения (А,В,С,D,F,G,K ), нужно предварительно определить их натуральные расстояния от вершины S , для чего следует перенести точки А 2 , В 2 , С 2 , D 2 , F 2 , G 2 , K 2 на соответствующие натуральные величины образующих конуса. Так как в прямом конусе все образующие равны, то достаточно перенести проекции точек сечения на крайние образующие S 2 1 2 и S 2 7 2 . Таким образом, отрезки S 2 A*, S 2 B*, S 2 D*, S 2 F*, S 2 G*, S 2 K* являются искомыми, т.е. равными натуральной величине расстояния от S до точек сечения.

Рисунок 2 (а)

Рисунок 2 (б)



Пример 3. Построить развертку боковой поверхности эллиптического конуса с круговым основанием (рисунок 3).

В данном примере коническая поверхность заменяется поверхностью вписанной двенадцатиугольной пирамиды. Так как коническая поверхность имеет плоскость симметрии, то можно построить развертку только одной половины поверхности. Разделив от точки О половину окружности основания конической поверхности на шесть равных частей и определив с помощью прямоугольных треугольников натуральные величины образующих, проведенных в точки деления, строим шесть примыкающих один к другому треугольников с общей вершиной S.

Каждый из этих треугольников строится по трем сторонам; при этом две стороны равны натуральным величинам образующих, а третья – хорде, стягивающей дугу окружности основания между соседними точками деления (например О 1 -1 1 , 1 1 -2 1 , 2 1 - 3 1 и т.д.) После этого через точки 0, 1, 2 … разогнутого по способу хорд основания конической поверхности проводится плавная кривая.

Если на развертке надо нанести какую-либо точку М , находящуюся на поверхности конуса, то следует предварительно построить точку М* на гипотенузе S 2 –7* прямоугольного треугольника, с помощью которого определена натуральная величина образующей S – 7 , проходящей через точку М . После этого следует провести на развертке прямую S – 7 , определив точку 7 из условия равенства хорд 2 1 – 7 1 =2 – 7 , и на ней отложить расстояние SM=S 2 M* .

Рисунок 3

3 ПОСТРОЕНИЕ РАЗВЕРТОК ПРИЗМАТИЧЕСКИХ

И ЦИЛИНДРИЧЕСКИХ ПОВЕРХНОСТЕЙ

Построение разверток призматических и цилиндрических поверхностей приводит в общем случае к многократному построению натурального вида трапеций, из которых состоит данная призматическая поверхность, или призматическая поверхность, вписанная (или описанная) в цилиндрическую поверхность и заменяющая ее. Если, в частности, призматическая или цилиндрическая поверхности ограничены параллельными основаниями, то трапеции, на которые разбивается поверхность, обращаются в прямоугольники или параллелограммы, в зависимости от того, перпендикулярны или нет плоскости оснований боковым ребрам или образующим поверхности.

Построение трапеций или параллелограммов проще всего произвести по их основаниям и высотам, причем необходимо также знать отрезки оснований, на которые они делятся высотой. Поэтому для построения развертки призматической или цилиндрической поверхности необходимо предварительно определить натуральный вид нормального сечения данной поверхности. Стороны этого сечения, в случае призматической поверхности, и будут высотами трапеций или параллелограммов, из которых состоит поверхность. В случае цилиндрической поверхности высотами будут хорды, стягивающие дуги нормального сечения, на которые разделена кривая, ограничивающая это сечение.

Так как указанный способ требует построения нормального сечения, то он называется способом нормального сечения .

Покажем применение этого способа для призматических поверхностей. Если пренебречь графическими ошибками, то построенные развертки этих поверхностей можно считать точными.

Пример 4. АВСDEF (рисунок 4).

Пусть данная призма расположена относительно плоскостей проекций так, что ее боковые ребра являются фронталями. Тогда они проецируются на плоскость проекций П 2 в натуральную величину и фронтально проецирующая плоскость S v , перпендикулярная боковым ребрам, определит нормальное сечение PQR призмы.

Построив натуральный вид P 4 Q 4 R 4 этого сечения, найдем натуральные величины P 4 Q 4 , Q 4 R 4 и R 4 P 4 - высот параллелограммов, из которых состоит боковая поверхность призмы.

Рисунок 4

Так как боковые ребра призмы параллельны между собой, а стороны нормального сечения им перпендикулярны, то из свойства сохранения углов на развертке следует, что на развертке призмы боковые ребра будут также параллельны между собой, а стороны нормального сечения развернутся в одну прямую. Поэтому для построения развертки призмы нужно отложить на произвольной прямой натуральные величины сторон нормального сечения, а затем через их концы провести прямые,

перпендикулярные к этой прямой. Если теперь отложить на этих перпендикулярах

по обе стороны от прямой QQ отрезки боковых ребер, измеренные на плоскости проекций П 2 , и соединить отрезками прямых концы отложенных отрезков, то получим развертку боковой поверхности призмы. Присоединяя к этой развертке оба основания призмы, получим ее полную развертку.

Если боковые ребра данной призмы имели бы произвольное расположение относительно плоскостей проекций, то нужно было бы предварительно преобразовать их в прямые уровня.

Существуют также другие способы построения разверток призматических поверхностей, один из которых – раскатка на плоскости – рассмотрим на примере 5.

Пример 5. Построить полную развертку поверхности треугольной призмы ABCDEF (рисунок 5).

Рисунок 5

Эта призма расположена относительно плоскостей проекций так, что ее ребра являются фронталями, т.е. на фронтальной плоскости проекций П 2 изображены в натуральную величину. Это позволяет использовать один из методов вращения, позволяющих находить натуральную величину фигуры путем вращения ее вокруг прямой уровня. В соответствии с этим методом точки B,C,A,D,E,F, вращаясь вокруг ребер AD, BE и CF, совмещаются с фронтальной плоскостью проекций. Т.е. траектория движения точек В 2 и F 2 изобразится перпендикулярно A 2 D 2 .

Раствором циркуля, равным натуральной величине отрезка АВ (АВ=А 1 В 1 ), из точек А 2 и D 2 делаем засечки на траектории движения точек В 2 и F 2 . Полученная грань A 2 D 2 B F изображена в натуральную величину. Следующие две грани B F C E и C E AD строим аналогичным способом. Пристраиваем к развертке два основания АВС и DEF . Если призма расположена так, что ее ребра не являются прямыми уровня, то используя методы преобразования чертежа (замены плоскостей проекций или вращения), следует провести преобразование так, чтобы ребра призмы стали прямыми уровня.

Рассмотрим построение разверток цилиндрических поверхностей. Хотя цилиндрические поверхности являются развертывающимися, практически строят приближенные развертки, заменяя их вписанными призматическими поверхностями.





П ример 6. Построить развертку прямого цилиндра, усеченного плоскостью Sv (рисунок 6).

Рисунок 6

Построение развертки прямого цилиндра не представляет никакой сложности, т.к. является прямоугольником, длина одной стороны равняется 2πR, а длина другой равна образующей цилиндра. Но если требуется нанести на развертку контур усеченной части, то построение целесообразно вести, вписав в цилиндр двенад-цатигранную призму. Обозначим точки сечения (сечение является эллипсом), лежащие на соответствующих образующих, точками 1 2 , 2 2 , 3 2 … и по линиям связи
перенесем их на развертку цилиндра. Соединим эти точки плавной линией и пристроим натуральную величину сечения и основание к развертке.

Если цилиндрическая поверхность наклонная, то развертку можно строить двумя способами, рассмотренными ранее на рисунках 4 и 5.

П ример 7. Построить полную развертку наклонного цилиндра второго порядка (рисунок 7).

Рисунок 7

Образующие цилиндра параллельны плоскости проекций П 2, т.е. изображены на фронтальной плоскости проекций в натуральную величину. Основание цилиндра делят на 12 равных частей и через полученные точки проводят образующие. Развертку боковой поверхности цилиндра строят так же, как была построена развертка наклонной призмы, т.е. приближенным способом.

Для этого из точек 1 2 , 2 2 , …, 12 2 опускают перпендикуляры к очерковой образующей и радиусом, равным хорде 1 1 2 1 , т.е. 1/12 части деления окружности основания, последовательно делают засечки на этих перпендикулярах. Например, делая засечку из точки 1 2 на перпендикуляре, проведенном из точки 2 2 , получают 2 . Принимая далее точку 2 за центр, тем же раствором циркуля делают засечку на перпендикуляре, проведенном из точки 3 2 , и получают точку 3 и т.д. Полученные точки 1 2 , 2 , 3 ,, 1 соединяют плавной лекальной кривой. Развертка верхнего основания симметрична развертке нижнего, так как сохраняется равенство длин всех образующих цилиндра.

4 ПРИБЛИЖЕННОЕ РАЗВЕРТЫВАНИЕ ШАРОВОЙ ПОВЕРХНОСТИ

Шаровая поверхность относится к так называемым неразвертываемым поверхностям, т. е. к таким, которые не могут быть совмещены с плоскостью, не претерпев при этом каких-либо повреждений (разрывов, складок). Таким образом, шаровая поверхность может быть развернута лишь приближенно.

Один из способов приближенной развертки шаровой поверхности рассмотрен на рисунке 8.

Сущность этого приема состоит в том, что шаровая поверхность при помощи меридианальных плоскостей, проходящих через ось шара SP , разбивается на ряд одинаковых частей.

На рисунке 8 шаровая поверхность разбита на 12 равных частей и показана горизонтальная проекция (s 1 , k 1 , l 1 ) только одной такой части. Затем дуга k 4 l заменена прямой (m 1 n 1 ), касательной к окружности, и эта часть шаровой поверхности заменена цилиндрической поверхностью с осью, проходящей через центр шара и параллельной касательной тп. Далее дуга s 2 4 2 разделена на четыре равные части. Точки 1 2 , 2 2 , 3 2 , 4 2 приняты за фронтальные проекции отрезков образующих цилиндрической поверхности с осью, параллельной тп. Их горизонтальные проекции: a 1 b 1 , c 1 d 1 , e 1 f 1 , т 1 п 1 . Затем на произвольной прямой MN отложен отрезок тп . Через его середину проведен перпендикуляр к MN и на нем отложены отрезки 4 2 3 2 , 3 2 2 2 , 2 2 1 2 , 1 2 S 2 , равные соответствующим дугам 4 2 3 2 , 3 2 2 2 , 2 2 1 2 , 1 2 s 2 . Через полученные точки проведены линии, параллельные тп, и на них отложены соответственно отрезки а 1 b 1 , c 1 d 1 , e 1 f 1 . Крайние точки этих отрезков соединены плавной кривой. Получилась развертка 1 / 12 части шаровой поверхности. Очевидно, для построения полной развертки шара надо вычертить 12 таких разверток.

5 ПОСТРОЕНИЕ РАЗВЕРТКИ КОЛЬЦА

Пример 9 . Построить развертку поверхности кольца (рисунок 9).

Разобьем поверхность кольца при помощи меридианов на двенадцать равных частей и построим приближенную развертку одной части. Заменяем поверхность этой части описанной цилиндрической поверхностью, нормальным сечением которой будет средний меридиан рассматриваемой части кольца. Если теперь спрямить этот меридиан в отрезок прямой и через точки деления провести перпендикулярно к нему образующие цилиндрической поверхности, то, соединив их концы плавными кривыми, получим приближенную развертку 1/12 части поверхности кольца.

Рисунок 8

Рисунок 9

6 ПОСТРОЕНИЕ РАЗВЕРТКИ ВОЗДУХОВОДА

В заключение покажем построение развертки поверхности одной технической детали, изготовляемой из листового материала.

На рисунке 10 изображена поверхность, с помощью которой осуществляется переход с квадратного сечения на круглое. Эта поверхность состоит из двух
конических поверхностей I , двух конических поверхностей II , двух плоских треугольников III и плоских треугольников IV и V .

Рисунок 10

Для построения развертки данной поверхности нужно предварительно определить натуральные величины тех образующих конических поверхностей I и II , с помощью которых эти поверхности заменяются совокупностью треугольников. На вспомогательном чертеже по способу прямоугольного треугольника построены натуральные величины этих образующих. После этого строят развертки конических поверхностей, а между ними в определенной последовательности строят треугольники III , IV и V , натуральный вид которых определяется по натуральной величине их сторон.

На чертеже (см. рисунок 10) показано построение развертки части от данной поверхности. Для построения полной развертки воздуховода следует достроить конические поверхности I, II и треугольник III.





Рисунок 11

На рисунке 11 приведен пример развертки воздуховода, поверхность которого можно разбить на 4 одинаковые цилиндрические поверхности и 4 одинаковые треугольника. Цилиндрические поверхности представляют собой наклонные цилиндры. Метод построения развертки наклонного цилиндра методом раскатки приведен подробно ранее на рисунке 7. Более удобным и наглядным для данной фигуры методом построения развертки представляется метод триангуляции, т.е. цилиндрическая поверхность разбивается на треугольники. А затем определяется натуральная величина сторон методом прямоугольного треугольника. Построение развертки цилиндрической части воздуховода обоими способами приведено на рисунке 11.

Вопросы для самоконтроля

1. Укажите приемы построения разверток цилиндрических и конических поверхностей.

2. Как построить развертку боковой поверхности усеченного конуса, если нельзя достроить этот конус до полного?

3. Как построить условную развертку сферической поверхности?

4. Что называется разверткой поверхности?

5. Какие поверхности относятся к развертывающимся?

6. Перечислите свойства поверхности, которые сохраняются на ее развертке.

7. Назовите способы построения разверток и сформулируйте содержание каждого из них.

8. В каких случаях для построения развертки используются способы нормального сечения, раскатки, треугольников?

Литература

Основная литература

1. Гордон, В.О. Курс начертательной геометрии / В.О. Гордон, М.А. Семенцо-Огиевский; под ред. В.О. Гордона. – 25-е изд., стер. – М.: Высш. шк., 2003.

2. Гордон, В.О. Сборник задач по курсу начертательной геометрии / В.О. Гордон, Ю.Б. Иванов, Т.Е. Солнцева; под ред. В.О. Гордона. – 9-е изд., стер. – М.: Высш. шк., 2003.

3. Курс начертательной геометрии / под ред. В.О. Гордона. – 24-е изд, стер. – М.: Выcшая школа, 2002.

4. Начертательная геометрия / под ред. Н.Н. Крылова. – 7-е изд., перераб. и доп.- М.: Выcшая школа, 2000.

5. Начертательная геометрия. Инженерная и машинная графика: программа, контрольные задания и методические указания для студентов-заочников инже-нерно-технических и педагогических специальностей вузов / А.А. Чекмарев,
А.В. Верховский, А.А. Пузиков; под ред. А.А. Чекмарева. – 2-е изд., испр. – М.: Выcшая школа, 2001.

Дополнительная литература

6. Фролов, С.А. Начертательная геометрия / С.А. Фролов. – М.: Машиностроение, 1978.

7. Бубенников, А.В. Начертательная геометрия / А.В. Бубенников, М.Я. Громов. – М.: Высшая школа, 1973.

8. Начертательная геометрия / под общей ред. Ю.Б. Иванова. – Минск: Вышейшая школа, 1967.

9. Боголюбов, С.К. Черчение: учебник для машиностроительных специальностей средних специальных учебных заведений / С.К. Боголюбов. – 3-е изд., испр. и дополн. – М.: Машиностроение, 2000.

Общие понятия о развертывании поверхностей………………………………………...3

1 Построение разверток пирамидальных поверхностей………………………………..3

2 Построение разверток конических поверхностей………………………………….….5

3 Построение разверток призматических и цилиндрических поверхностей………….9

4 Приближенное развертывание шаровой поверхности………………………….….. 14

5 Построение развертки кольца………………………………………………………....14

6 Построение развертки воздуховода…………………………………………………...16

Вопросы для самоконтроля……………………………………………………………...19

Литература………………………………………………………………………………..20

Куничан Галина Ивановна

Идт Любовь Ивановна

Построение разверток поверхностей

Методические рекомендации по курсу начертательной геометрии для самостоятельной работы студентов механических специальностей 171200, 120100, 171500, 170600

Редактор Идт Л.И.

Технический редактор Малыгина Ю.Н.

Корректор Малыгина И.В.

Подписано в печать 25.01.05. Формат 61х86 /8.

Усл. п. л. 2,67. Уч.-изд. л. 2,75.

Печать – ризография, множительно-копировальный

аппарат «RISO TR -1510»

Тираж 60 экз. Заказ 2005-06.

Издательство Алтайского государственного

технического университета,

656099, г. Барнаул, пр.-т Ленина, 46

Оригинал-макет подготовлен ИИЦ БТИ АлтГТУ.

Отпечатано в ИИЦ БТИ АлтГТУ.

659305, г. Бийск, ул. Трофимова, 29

Г.И. Куничан, Л.И. Идт

ПОСТРОЕНИЕ РАЗВЕРТОК ПОВЕРХНОСТЕЙ

для самостоятельной работы студентов механических специальностей

Развертка поверхности многогранников известна читателю из средней школы. Поэтому на этом вопросе мы останавливаемся кратко, только в плане повторения известных ранее сведений.

Под разверткой многогранной поверхности подразумевают плоскую фигуру, составленную из граней этой поверхности, совмещенных с одной плоскостью.

Существуют три способа построения развертки многогранных поверхностей:

1) способ нормального сечения;

* Геометрическое преобразование, при котором сохраняются величины углов, называется конфорным, следовательно, построение разверток является конфорным преобразованием, а поверхность и ее развертка конфорны.

** Геодезической называется линия, принадлежащая поверхности и соединяющая кратчайшим путем две точки, также принадлежащие поверхности.

2) способ раскатки;

3) способ треугольников (триангуляции).

Первые два применяются для построения развертки призматических поверхностей, третий - для пирамидальных поверхностей. Рассмотрим каждый их этих способов.

1. Способ нормального сечения.

ПРИМЕР. Построить развертку наклонной трехгранной призмы ABCDEF (рис. 292).

РЕШЕНИЕ. Пересечем призму ABCDEF плоскостью γ, перпендикулярной к боковым ребрам призмы. Построим сечение заданной призмы этой плоскостью - Δ123. Определим длины сторон Δ123. В свободном месте чертежа проведем прямую а (на рис. 292 прямая а проведена горизонтально). От произвольной точки 1 0 , взятой на этой прямой, отложим отрезки , [ 2 0 3 0 ], , конгруентные сторонам Δ123. Через точки 1 0 , 2 0 , 3 0 , 1 0 проведем прямые,

перпендикулярные к прямой а, и отложим на них от точек 1 0 , 2 0 , 3 0 , 10 0 отрезки, конгруентные соответствующим длинам боковых ребер (, [ ID], , [ 2Е], ...). Полученные точки А 0 В 0 C 0 A 0 и D 0 Е 0 F 0 D 0 соединяем прямыми. * Плоская фигура A 0 B 0 C 0 A 0 D 0 F 0 E 0 D 0 представляет собой развертку боковой поверхности призмы.

Чтобы получить полную развертку призмы, необходимо к развертке боковой поверхности пристроить основания призмы - ΔА 0 В 0 С 0 и ΔD 0 E 0 F 0 , предварительно определив их неискаженные размеры.

* На рис. 292 ребра АD ВЕ и CF параллельны плоскости π 1 , поэтому они проецируются ца эту плоскость без искажения. Если ребра призмы занимают произвольное положение, то прежде чем приступить к построению развертки, следует с помощью способов преобразования перевести их в положение, параллельное какой-либо плоскости проекции.

2. Способ раскатки.

Этот способ целесообразно использовать для построения развертки поверхности призмы в том случае, когда основание призмы параллельно какой-либо одной плоскости проекции, а ее ребра параллельны другой плоскости проекции.

ПРИМЕР. Построить развертку боковой поверхности наклонной трехгранной призмы ABCDEF (рис. 293).

РЕШЕНИЕ. Примем за плоскость развертки плоскость γ, проходящую через ребро AD, параллельную фронтальной плоскости проекции. Совместим грань ADEB с плоскостью γ. Для этого мысленно разрежем боковую поверхность призмы по ребру AD, а затем осуществим поворот грани ADEB вокруг ребра AD (A"D").

Для нахождения совмещенного с плоскостью γ положения ребра В 0 Е 0 из точки В" проводим луч, перпендикулярный к A"D" и засекаем на нем дугой радиуса |А"В"| , проведенной из центра А", точку B 0 . Через B 0 проводим прямую В 0 Е 0 , параллельную (A"D").

Принимаем совмещенное положение ребра B 0 E 0 за новую ось вращения и поворачиваем вокруг нее грань BEFC до совмещения с плоскостью γ. Для этого из точки С" проводим луч, перпендикулярный к совмещенному ребру B 0 E 0 , а из точки В 0 - дугу окружности радиусом, равным |В"С"|; пересечение дуги с лучом определит положение точки С 0 . Через С 0 проводим С 0 F 0 параллельно В 0 Е 0 . Аналогично находим положение ребра А 0 D 0 . Соединив точки А"В 0 C 0 A 0 и D"E 0 F 0 D 0 прямыми, получим фигуру A"B 0 C 0 A 0 D 0 F 0 E 0 D" - развертку боковой поверхности призмы. Для получения полной развертки призмы достаточно к какому-либо из звеньев ломаной линии А"В 0 С 0 А 0 и D"E 0 F 0 D 0 пристроить треугольники основания А 0 В 0 С 0 и D 0 E 0 F 0 .

3. Способ треугольников (триангуляции).

ПРИМЕР. Построить развертку боковой поверхности пирамиды SABC (рис. 294).

Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников - граней пирамиды.

На рис. 294 определение длин ребер пирамиды выполнено с помощью вращения их вокруг оси i ∋ S и i ⊥ π 1 . Путем вращения ребра пирамиды совмещаются с плоскостью γ плоскость γ || π 2 и γ ⊃ i . После того как определены длины ребер |S"A 2 |, |S"B 2 |, |S"C 2 |, приступаем к пост-


роению развертки. Для этого через произвольную точку S 0 проводим прямую а. Откладываем на ней от точки S 0 ≅ . Из точки A 0 проводим дугу радиусом r 1 = |А"В"|, а из точки S 0 - дугу радиусом R 1 = |S"B 2 |. Пересечение

дуг укажет положение вершины В 0 ΔS 0 A 0 B 0 (ΔS 0 A 0 B 0 ≅ ΔSAB - грани пирамиды). Аналогично находятся точки С 0 и A 0 . Соединив точки A 0 В 0 С 0 A 0 , получим развертку боковой поверхности пирамиды SABC.

Вам понадобится

  • Карандаш Линейка угольник циркуль транспортир Формулы вычисления угла по длине дуги и радиусу Формулы вычисления сторон геомтрических фигур

Инструкция

На листе бумаги постройте основание нужного геометрического тела. Если вам даны паралеллепипед или , измерьте длину и ширину основания и начертите на листе бумаги прямоугольник с соответствующими параметрами. Для построения развертки а или цилиндра вам необходимо радиус окружности основания. Если она не задана в условии, измерьте и вычислите радиус.

Рассмотрите паралеллепипед. Вы увидите, что все его грани расположены под углом к основанию, но параметры этих граней разные. Измерьте высоту геометрического тела и с помощью угольника начертите два перпендикуляра к длине основания. Отложите на них высоту паралеллепипеда. Концы получившихся отрезков соедините прямой. То же самое сделайте с противоположной стороны исходного .

От точек пересечения сторон исходного прямоугольника проведите перпендикуляры и к его ширине. Отложите на этих прямых высоту паралеллепипеда и соедините полученные точки прямой. То же самое сделайте и с другой стороны.

От внешнего края любого из новых прамоугольников, длина которого совпадает с длиной основания, постройте верхнюю грань паралеллепипеда. Для этого из точек пересечеения линий длины и ширины, расположенных на внешней стороне, проведите перпендикуляры. Отложите на них ширину основания и соедините точки прямой.

Для построения развертки конуса через центр окружности основания проведите радиус через любую точку окружности и продолжите его. Измерьте расстояние от основания до вершины конуса. Отложите это расстояние от точки пересечения радиуса и окружности. Отметьте точку вершины боковой поверхности. По радиусу боковой поверхности и длине дуги, которая равняется длине окружности основания, вычислите угол развертки и отложите его от уже проведенное через вершину основания прямой. С помощью циркуля соедините найденную ранее точку пересечения радиуса и окружности с этой новой точкой. Развертка конуса готова.

Для построения развертки пирамиды измерьте высоты ее сторон. Для этого найдите середину каждой стороны основания и измерьте длину перпендикуляра, опущенного из вершины пирамиды к этой точке. Начертив на листе основание пирамиды, найдите середины сторон и проведите к этим точкам перпендикуляры. Соредините полученные точки с точками пересечения сторон пирамиды.

Развертка цилиндра представляет собой две окружности и расположенный между ними прямоугольник, длина которого равна длине окружности, а высота - высоте цилиндра.